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The structure of the Newtonian limit
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Abstract

We consider a smooth one-parameter family of four-dimensional manifoldsXε, ε ≥ 0, each one
endowed with a covariant metricgε. It is assumed thatgε is a Lorentz metric for eachε > 0, i.e.,
the signature ofgε is (+,−,−,−) for ε > 0, while the limit metricg0 onX0 is assumed to be
degenerated of rank 1, i.e., the signature ofg0 is(+,0,0,0). We characterize when the limit manifold
X0 inherits the geometric structure of a Newtonian gravitation. The limit manifoldX0 is a Newtonian
gravitation if and only if there exist the limits of the Levi-Civita connection∇ε, the curvature operator
Rε and the contravariant Einstein tensorG2

ε asε → 0. Moreover, the existence of these limits is
characterized in terms of the Taylor expansion of the family{gε} with respect to the parameterε.
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1. Introduction

Works of Cartan[2,3] and Trautman[18] show that the Newtonian gravitation may be
geometrically formulated as a four-dimensional manifold endowed with a covariant metricḡ

of rank 1 (the time metric), a contravariant metricḡ∗ of rank 3 (the space metric), a symmetric
linear connection∇̄ and a contravariant metric̄T 2 (the matter tensor) satisfying certain
conditions. This geometric formulation is the starting point of the rigorous study of the
relations between Newtonian gravitation and general relativity, because any Lorentz metric
g also defines a contravariant metricg∗ (the dual metric), a symmetric linear connection∇
(the Levi-Civita one) and a matter tensor (via the Einstein equation). Hence, it is full-sense
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to ask whether a given Newtonian gravitation is a deformation of certain Lorentz metrics
or whether the limit of a sequence of Lorentz metrics is a Newtonian gravitation.

This paper is devoted to the study of the conditions that a family of Lorentz metrics
must satisfy in order to have a Newtonian limit. Inspired in Ehlers’ frame theory[4–6] and
Rendall’s paper[16], we shall consider a smooth one-parameter family of four-dimensional
manifoldsXε, ε ≥ 0, each one endowed with a covariant metricgε. It is assumed thatgε is
a Lorentz metric for eachε > 0, i.e., the signature ofgε is (+,−,−,−) for ε > 0, while
the limit metricg0 onX0 is assumed to be degenerated of rank 1, i.e., the signature ofg0
is (+,0,0,0). This type of family will be called adegeneration of Lorentz metrics. It is a
family of Lorentz metrics whose light cones open up to hyperplanes. Usually the parameter
ε is physically interpretetated asε = c−2, wherec is the speed of light in standard units, so
thatc → ∞ asε → 0.

The family of dual metrics{g∗
ε } has no limit but, in the generic case, the limit contravariant

metricḡ∗ := limε→0(−εg∗
ε ) exists and it has rank 3. We shall only consider degenerations

of Lorentz metrics whose limit contravariant metricḡ∗ exists and it has rank 3. Therefore, the
limit fibre X0 of a degeneration of Lorentz metrics has a time metricḡ := g0 = limε→0 gε
and a space metric̄g∗ := limε→0(−εg∗

ε ).
The purpose of this paper is to characterize when the limit manifoldX0 inherits the

structure of a Newtonian gravitation. For anyε > 0 we consider on the Lorentz manifold
(Xε, gε) the Levi-Civita connection∇ε, the curvature operatorRε : Λ2TXε → Λ2TXε
and the contravariant Einstein tensorG2

ε . We shall show that the limit manifoldX0 is a
Newtonian gravitation if and only if there exist the limits of∇ε,Rε andG2

ε asε → 0.
Let us resume the steps of our analysis. The first step is the characterization of the

existence of the limit connection. The result is elementary and well known.

Theorem 1.1 (Kunzle[10]). The limit connection̄∇ := limε→0 ∇ε exists if and only if the
limit metric ḡ is locally the square of an exact differential, (i.e., ḡ = dt2).

In other words, the existence of the limit connection is equivalent to the local existence of
anabsolute timeonX0.

Now let us assume that the limit connection∇̄ exists. The second step in our analysis
determines when the limit manifold(X0, ḡ, ḡ

∗, ∇̄) is aNewtonian space–time, i.e., there
exist local coordinates(t, x1, x2, x3) onX0 such that

ḡ = dt ⊗ dt, ḡ∗ = ∂x1 ⊗ ∂x1 + ∂x2 ⊗ ∂x2 + ∂x3 ⊗ ∂x3,

∇̄∂xi ∂xj = ∇̄∂t ∂xj = 0, i, j = 1–3, ∇̄∂t ∂t = −(∂x1u)∂x1 − (∂x2u)∂x2 − (∂x3u)∂x3,

whereu(t, x1, x2, x3) is a smooth function. The coordinate system(t, x1, x2, x3) is said to be
aNewtonian reference frameandu is the correspondingpotential function. The differential
equations of geodesic lines of∇̄ are just

d2xi

d2t
= ∂u

∂xi
,

so that they coincide with the Newtonian equations of motion of freely falling bodies.
Therefore, the notion of a Newtonian space–time corresponds with the classical Newton
theory associated to a potential function. We obtain the following characterization.
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Theorem 1.2. Let us assume that the limit connection∇̄ exists. Then the following condi-
tions are equivalent:

(a) (X0, ḡ, ḡ
∗, ∇̄) is a Newtonian space–time.

(b) The limit curvature operatorlimε→0Rε exists.
(c) There exist suitable local coordinates(ε, t, x1, x2, x3) such that

gε = gtt dt2 +
∑
i

gti(dt dxi + dxi dt)+
∑

ij

gij dxi dxj ,

where

gtt = 1 − 2uε + O(ε2), gti = O(ε2), gij = −δijε + O(ε2),

u(t, x1, x2, x3) being a smooth function. (This function u is just the potential function
of the limit Newtonian space–time.)

Note that if we takeε = c−2 in the above expression (and the terms O(ε2) are neglected)
then we obtain the metricg = (1− 2uc−2)dt2 − c−2∑dx2

i . This metric is typically used
in textbooks to show the Newtonian theory as an approximation of the relativistic theory in
a imprecise manner; the above characterization gives a rigorous formulation of this fact.

In the following step of our analysis, we determine when there exists the limit of the
contravariant Einstein tensorsG2

ε of gε as ε → 0. This is a central question since the
limit T̄ 2 = limε→0(1/8π)G2

ε provides a matter tensor for the limit Newtonian space–time,
satisfying the usual dynamical conditions. In such case, one obtains the full structure of a
Newtonian gravitationon the limit manifold. Our result is the following.

Theorem 1.3. Let us consider a degeneration of Lorentz metrics such that the limit connec-
tion exists and the limit manifold(X0, ḡ, ḡ

∗, ∇̄) is a Newtonian space–time(equivalently,
the limit curvature operator exists). Then the limit ofG2 asε → 0 exists if and only if there
exist suitable local coordinates such that

gtt = 1 − 2uε + O(ε2), gti = O(ε2), gij = −δij (ε + 2uε2)+ O(ε2).

This expression for the metricgε is also obtained by Rendall[16]. He assumes a global
condition (flatness at infinity) instead of our local condition on the existence of the limit
curvature operator.

The above result has a remarkable application. Using the obtained expression for the
metricgε, we derived in[13] the Newtonian motion law forn punctual bodies from the field
equations, in the following sense. Let us consider a Newtonian gravitation ofn punctual
variablemasses followingarbitrary trajectories. Let us assume that this Newtonian gravita-
tion is the limit of a degeneration of Lorentz metrics. In particular the limit Einstein tensor
vanishes, i.e., limε→0G

2
ε = 0, on the complementary set of the punctual masses. Then

these punctual masses are constant and their trajectories obey the Newtonian law of motion.
This result is contained in the classical EIH papers (see[1] for a clearer exposition) under
certain implicit assumptions on the poles ofG2

ε , which are removed in our formulation.
In this paper, any function, manifold, exterior form, etc., is assumed to be ofC∞-class.
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2. Preliminaries: Newtonian gravitation

Definition 2.1. A Newtonian space–timeis a four-dimensional smooth manifold̄X en-
dowed with a two-covariant symmetric metric̄g (the time metric), a two-contravariant
symmetric metric̄g∗ (thespace metric) and a torsionless linear connection∇̄ satisfying the
following local conditions.

Axiom 1. At any point ofX̄ the signature of̄g∗ is (+,0,0,0).
Hence, the radical of̄g, i.e., the kernel of the polaritȳg : TxX̄ → T ∗

x X̄, is a three-dimensional
vector space at each pointx ∈ X̄. Vectors in this radical are said to bespatial vectors.

Locally we havēg = ω̄⊗ω̄ for some one-form̄ωwell-defined up to a sign (for simplicity
we do not consider a time orientation). The radical ofḡ (i.e., the space of spatial vectors) is
the incident space with̄ω.

Axiom 2. At any point ofX̄ the signature of̄g∗ is (0,+,+,+), and the radicals of̄g∗ and
ḡ are mutually incident:̄g∗(ω̄) = 0.

Hence,ḡ∗ defines an inner product∗ on spatial vectors:

V1 ∗ V2 := ḡ∗(ω1, ω2),

whereωi is any one-form such that̄g∗(ωi) = Vi .

Axiom 3. The parallel transport preservesḡ andḡ∗: ∇̄ḡ = 0 and∇̄ḡ∗ = 0.

The condition∇̄ḡ = ∇̄(ω̄ ⊗ ω̄) = 0 implies dω̄ = 0. Therefore, locally we may write
ḡ = dt ⊗ dt .

Let R̄(D1,D2,D3) := ∇̄D1∇̄D2D3 − ∇̄D2∇̄D1D3 − ∇̄[D1,D2]D3 be the curvature tensor
of ∇̄. Let us define the following(2,2)-type tensor

R̄2
2(ω1,D2, ω3,D4) := ω3(R̄(D1,D2,D4)), D1 = ḡ∗(ω1).

Axiom 4. Conservative character of gravitatory forces:

R̄2
2(ω1,D2, ω3,D4) = R̄2

2(ω3,D4, ω1,D2).

Axioms 1–4define a Newtonian manifold in the sense of Newton–Cartan theory (see[10]).
Our concept of a Newtonian space–time requires one more axiom.

Axiom 5. Gyroscope Principle:̄R(D1,D2, V ) = 0 wheneverV is a spatial vector.

In particular, this axiom implies the Euclidean character of any spatial slicet = const.

(2.2) One may easily show that these five axioms are equivalent to the existence of local
coordinates(t, x1, x2, x3) such that

ḡ = dt ⊗ dt, ḡ∗ = ∂x1 ⊗ ∂x1 + ∂x2 ⊗ ∂x2 + ∂x3 ⊗ ∂x3,

∇̄∂xi ∂xj = ∇̄∂t ∂xj = 0, i, j = 1–3, ∇̄∂t ∂t = −(∂x1u)∂x1 − (∂x2u)∂x2 − (∂x3u)∂x3
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for some functionu(t, x1, x2, x2), where∂t := ∂/∂t and ∂xi := ∂/∂xi . The above last
equality, saying that̄∇∂t ∂t is a gradient vector, is a consequence ofAxiom 4; this motivates
the given denomination for such axiom.

Definition 2.3. A system of local coordinates(t, x1, x2, x3) on aNewtonian space–time is
said to be a Newtonian reference frameif the equalities (2.2) hold.

Given a Newtonian reference frame, the functionu(t, x1, x2, x3) is named thepotential
and its spatial gradientF := ∑

∂xi (u)∂xi = −∇̄∂t ∂t is named theforce intensity. Both
concepts depend on the Newtonian reference frame.

(2.4) Given a Newtonian space–time, it is easy to check that the Ricci tensorR̄2 of ∇̄
always is proportional tōg. The proportionality coefficient is denoted by 4πρ:

R̄2 = 4πρ · ḡ = 4πρ · dt2,

and this functionρ is said to be themass density. Poisson’s equationholds in any Newtonian
reference frame:

�u = ∂2u

∂x2
1

+ ∂2u

∂x2
2

+ ∂2u

∂x2
3

= −4πρ.

Moreover, the differential equations of geodesic lines of∇̄ are just

d2xi

d2t
= ∂u

∂xi
,

so that they coincide with the Newtonian equations of motion of freely falling bodies when
u is the gravitatory potential.

Definition 2.5. A matter tensoron a Newtonian space–time(X̄, ḡ, ḡ∗, ∇̄) is a two-contra-
variant symmetric tensor̄T 2 such that

(a) div∇̄ T̄ 2 = 0,
(b) R̄2 = 4πT̄2,

whereT̄2(D1,D2) := T̄ 2(ḡ(D1), ḡ(D2)).

The condition (b) inDefinition 2.5may be written in the same form as the relativistic
Einstein equation:

R̄2 = 8π
(
T̄2 − 1

2αḡ
)
,

whereα denotes the total contraction ofḡ⊗ T̄ 2 (it coincides with the mass densityρ in the
Newtonian case).

(2.6) On a Newtonian space–time this condition (b) inDefinition 2.5is equivalent to the
equationT̄ 2(dt,dt) = ρ. Now let us consider the vector fieldU := (1/ρ)C1

1(T̄
2 ⊗ dt).

Then we may write in any Newtonian reference frame

T̄ 2 = ρU ⊗ U +
∑

hij∂xi ⊗ ∂xj , U = ∂t + v1∂x1 + v2∂x2 + v3∂x3
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for certain smooth functionshij andvi . The tensorT̄ 2 may be interpreted as the matter
tensor of a fluid,U being the flow of the fluid,ρ the mass density, and

∑
hij∂xi ⊗ ∂xj is the

stress tensor. The condition div∇̄ T̄ 2 = 0 is equivalent to the pair of classical equations

continuity equation : div(ρU) = 0,

Euler equation : ρ∇̄UU = −div
(∑

hij∂xi ⊗ ∂xj

)
.

Definition 2.7. A Newtonian gravitationis a Newtonian space–time(X̄, ḡ, ḡ∗, ∇̄)endowed
with a matter tensor̄T 2.

A Newtonian perfect fluidof mass densityρ and pressurep is a Newtonian gravitation
whose matter tensor has the form

T̄ 2 = ρU ⊗ U + pḡ∗.

For the sake of completeness, we finish these preliminaries defining the concept of inertial
reference frame, although it will not be used in the rest of this paper. Given a Newtonian
space–time, a globally defined Newtonian reference frame(t, x1, x2, x3) is said to beinertial
if its corresponding force intensityF vanishes at infinity or, equivalently, its potential
function u coincides with the Newtonian potential defined by the mass densityρ (it is
assumed thatρ has compact support at each instant).

It is possible to show the existence of inertial reference frames when the curvature tensor
R̄ vanishes at infinity.

3. Relative tensors

In this paper we shall use Cartan’s exterior differential calculus in a more general setting
than it is usual. We shall consider “relative” differential forms with respect to a smooth map
ϕ : X → Y instead of the usual differential forms on a smooth manifold. Now we shall
introduce the definitions and we shall state the relative versions of the Poincaré lemma and
the Frobenius theorem.

Let us consider a submersionϕ : X → Y . For anyy ∈ Y we denoteXy := ϕ−1(y).
Sinceϕ is a submersion the fibresXy are subvarieties ofX, so thatϕ may be interpreted as
a smooth family of varieties{Xy} parametrized byY .

A tangent vector fieldD onX is said to be relative ifϕ∗(D) = 0, i.e.,D is tangent to the
fibresXy of ϕ. In other words, relative vector fields are just smooth cross-sections of the
relative tangent vector bundleT (X/Y ) defined by the following exact sequence:

0 → T (X/Y ) → TX
ϕ∗→ϕ∗(TY) → 0.

More generally, arelative tensor fieldT of type(p, q) onX is a smooth cross-section of
the vector bundle

T ∗ (X/Y )⊗
p ⊗ T (X/Y )⊗

q

,

whereT ∗(X/Y ) denotes the dual bundle ofT (X/Y ).
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A relative tensor fieldT onX defines by restriction a tensor fieldT|y onXy . Note thatT
is fully determined by the tensors fieldsT|y , so that a relative tensor fieldT must be viewed
as a smooth family{T|y}y∈Y of tensor fields on the manifolds{Xy}y∈Y .

Let us consider arelative p-formω, i.e., a smooth cross-section ofΛpT ∗(X/Y ). Theexte-
rior differentialofω is the relative(p+1)-form dω defined by the equality:(dω)|y = d(ω|y).

Given pointsx ∈ X, y = ϕ(x) ∈ Y , let us denote byC∞x (resp.C∞y ) the ring of germs
of smooth functions onX (resp.Y ) at x (resp.y). LetΩp

x be theC∞x -module of relative
p-forms (germs). Let

Ω•
x = C∞x ⊕Ω1

x ⊕Ω2
x ⊕ · · ·

be the differential exterior algebra of the relative forms.
Let J be an ideal ofC∞y . Let us considerJ as a subset ofC∞x via the natural inclusion
C∞y ↪→oϕC∞x . A relativep-formω is said to beexactmodulo (J ) if

ω ≡ dω′ mod(J )

for some relative(p − 1)-form ω′, i.e.,ω and dω′ have the same class inΩp
x /J · Ωp

x ⊂
Ω•
x /(J ).
A relativep-formω is said to beclosedmodulo (J ) if

dω ≡ 0 mod(J ).

Relative Poincaré Lemma 3.1. A relative p-formω ∈ Ω
p
x is closed modulo(J ) if and

only if it is exact modulo(J ).

A relative Pfaff system(atx) is a submoduleP ofΩ1
x such thatΩ1

x /P is a freeC∞x -module,
i.e.,P is a direct summand ofΩ1

x . A relative Pfaff systemP is said to be integrable ifP is
generated by exact relative one-forms:P = 〈dx1, . . . ,dxk〉. More generally, a relative Pfaff
systemP is said to beintegrablemodulo (J ) if P is generated by exact mod (J ) relative
one-forms.

Relative Frobenius Theorem 3.2. Let P be a relative Pfaff system. IfdP ≡ 0 mod(J, P ),
i.e., dP ≡ 0 in the quotient algebraΩ•

x /(J, P ), then P is integrable modulo(J ),

P ≡ 〈dx1, . . . ,dxk〉 mod(J ).

Moreover, if P is also integrable modulo an idealJ ′ ⊆ J , then there exist germsx′
i ≡

xi mod(J ) such that

P ≡ 〈dx′
1, . . . ,dx

′
k〉 mod(J ′).

These results have essentially the same proofs that the classical versions have. See details
in Appendix A.

4. Degenerations of Lorentz metrics

Let X be a five-dimensional smooth manifold (with boundary) and letε : X → I =
[0,∞) be a submersion. Each fibreXε on ε ∈ I is a four-manifold, so that the map
ε : X → I may be interpreted as a one-parameter smooth family{Xε} of four-manifolds.
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LetDX be theC∞(X)-module of all relative vector fields onX. A relative linear con-
nection∇ onX is defined to be aC∞-linear map

DX
∇→HomR(DX,DX), D �→ ∇D

satisfying the usual condition:∇D(fD′) = (Df)D′ + f (∇DD′).
Clearly any relative linear connection∇ defines, by restriction, a linear connection∇|ε

on each fibreXε of X → I , so that a relative connection∇ must be viewed as a smooth
family {∇|ε} of linear connection on the manifolds{Xε}.

Definition 4.1. A relative tensor fieldT on ε : X → I , defined on the open subsetε > 0,
is said to beprolongabletoX if it is the restriction of some relative tensor field defined on
the total spaceX. The restriction of this last tensor to the fibreX0 will be said to be the
limit tensorof T , and it will denoted byT|0.

Definition 4.2. A relative tensor fieldg on ε : X → I is said to be adegenerationof
Lorentz metrics if

(a) Its restrictiong|ε to any fibreXε , ε > 0, is a Lorentz metric, i.e., it has signature
(+,−,−,−) at any point ofXε .

(b) Its restrictiong|0 toX0 is a metric with signature(+,0,0,0) at any point ofX0.
(c) Let g∗ be the relative dual metric, which is defined on the open subsetε > 0. It is

assumed thatεg∗ is prolongable and that its limit(εg)|0 onX0 is a metric with signature
(0,−,−,−) at any point ofX0.

Therefore, a degeneration is a one-parameter family of Lorentz metrics{g|ε} whose limit
metricsḡ := g|0, ḡ∗ := (−εg∗)|0 are degenerate metrics of respective signature(+,0,0,0)
and(0,+,+,+). These metrics̄g, ḡ∗ satisfyAxioms 1 and 2of a Newtonian space–time.
Whenε > 0, each fibreXε is a relativistic space–time, whereg|ε is the time metric and
−εg∗

|ε is the space metric, so that the parameterεmay be physically interpreted asε = c−2,
wherec is the light speed.

Proposition 4.3. Let (X, ε, g) be a degeneration of Lorentz metrics. Then the matrix of g
in some local basis{D0,D1,D2,D3} of relative vector fields is


1

−ε
−ε

−ε


 .

Proof. Since(εg∗)|0 has signature(0,−,−,−) at any point ofX0 it is easy to check that
there exists a local basis{D0,D1,D2,D3} of relative vector fields onX such that

εg∗ = aεD0 ⊗D0 −D1 ⊗D1 −D2 ⊗D2 −D3 ⊗D3

for some smooth functiona onX. Then, in the dual basis{θ0, θ1, θ2, θ3}, we have

g = a−1θ0 ⊗ θ0 − εθ1 ⊗ θ1 − εθ2 ⊗ θ2 − εθ3 ⊗ θ3.
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Since the signature ofg|0 is (+,0,0,0), we obtain thata = bε−1, wherea > 0.
TakingD′

0 = √
aD0 andD′

i = Di for i = 1–3, we obtain a basis satisfying the required
condition. �

Definition 4.4. Let (X, ε, g) be a degeneration of Lorentz metrics. Let{D0, . . . , D3} be a
basis of relative tangent vectors at a pointx and let{θ0, . . . , θ3} be the corresponding dual
basis. These bases are said to benormal if

gx = θ0 ⊗ θ0 − ε(x)

3∑
1

θi ⊗ θi, (εg∗)x = ε(x)D0 ⊗D0 −
3∑
1

Di ⊗Di.

A basis of relative vector field is said to be normal if it is normal at each point.Proposition
4.3states the local existence of normal bases.

Let (X, ε, g) be a degeneration of Lorentz metrics and let∇ be the unique relative
torsionless linear connection, defined on the open setε > 0, such that∇g = 0. The
restriction∇|ε of ∇ to any fibreXε , ε > 0 coincides with the Levi-Civita connection
associated to the corresponding Lorentz metricg|ε .

Definition 4.5. We shall say that∇ is prolongableif it is the restriction of a relative linear
connection defined on the total spaceX. The restriction of this connection to the fibreX0
will be said to be thelimit connectionof ∇, and it will denoted by∇|0.

We shall give a necessary and sufficient condition for the relative connection∇ to be
prolongable. Previously, let us recall the Cartan structure equations.

(4.6) Let(X, ε, g)be a degeneration of Lorentz metrics. Given a local basis{θα}of relative
one-forms, let us consider the corresponding connection one-forms{ωαβ} and curvature
two-forms {Ωαβ} with respect to the relative connection∇. Of course, these forms are
relative and they are defined in the open subsetε > 0. We have the Cartan structure
equations (using the standard matrix convention)

dθ + ω ∧ θ = 0, dω + ω ∧ ω = Ω,

and the Bianchi identities

Ω ∧ θ = 0, Ω ∧ ω − ω ∧Ω = dΩ.

Moreover, if{θα} is a normal basis then we have

ωij = −ωji , Ωij = −Ωji , ω0α = εωα0, Ω0α = εΩα0

(Latin indices shall assume the values 1–3 while Greek indices shall run from 0 to 3).

Proposition 4.7. Let (X, ε, g) be a degeneration of Lorentz metrics. The relative linear
connection∇ is prolongable if and only ifdθ0 ≡ 0 mod(ε) for any local normal basis{θα}
of relative1-forms.

Proof. If ∇ is prolongable the first structure equation gives

dθ0 = −
∑

ω0k ∧ θk = −ε
∑

ωk0 ∧ θk ≡ 0 mod(ε).
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Reciprocally, if dθ0 ≡ 0 mod(ε) we prove that the connection one-formsωαβ are pro-
longable and, therefore,∇ is prolongable. Let us write

ωαβ =
∑

A
γ
αβθγ .

Let {Dα} be the dual basis of{θα} and letδα := g(Dα,Dα), i.e.,δ0 = 1 andδi = −ε for
i = 1–3. Now the one-formsωαβ are prolongable because of following standard formula
for the coefficientsAγαβ :

δαA
γ
αβ = 1

2[δα dθα(Dβ,Dγ )− δγ dθγ (Dα,Dβ)+ δβ dθβ(Dγ ,Dα)]. �

FromProposition 4.7and the Relative PoincaréLemma 3.1one obtains directly.

Theorem 4.8 (Kunzle[10]). The relative linear connection∇ associated to a degeneration
(X, ε, g) is prolongable if and only if there exists locally a smooth function t such that

g ≡ dt2 mod(ε).

(4.9) Now we shall investigate the structure of the limit fibreX0 of a degeneration(X, ε, g)
of Lorentz metrics.

By definition of a degeneration, the limit metricsḡ := g|0, ḡ∗ := (−εg∗)|0 satisfy
Axioms 1 and 2of a Newtonian space–time.

Now let us also assume that the relative symmetric linear connection∇ is prolongable,
so that it defines a symmetric linear connection∇̄ := ∇|0 onX0. On the open subsetε > 0
we have∇g = 0 and∇(εg∗) = ε(∇g∗) = 0; by continuity, it follows that∇̄ḡ = 0 and
∇̄ḡ∗ = 0 (Axiom 3).

Finally, letR be the (relative) curvature tensor of∇ and let us consider the(2,2)-type
tensor

R2
2(ω1,D2, ω3,D4) := ω3(R(D1,D2,D4)), D1 = g∗(ω1).

This is a relative tensor, defined on the open subsetε > 0, and it satisfies the usual
symmetry conditionR2

2(ω1,D2, ω3,D4) = R2
2(ω3,D4, ω1,D2). It is clear that−εR2

2 is
prolongable, because so are−εg∗ andR. Hence, by continuity, the tensor̄R2

2 = (−εR2
2)|0

onX0 also satisfies the above symmetry condition (Axiom 4).
In conclusion, we have proved the following.

Proposition 4.10. Let (X, ε, g) be a degeneration of Lorentz metrics. If the relative con-
nection∇ is prolongable, then the limit fibre(X0, ḡ := g|0, ḡ∗ := (−εg∗)|0, ∇̄ := ∇|0)
satisfies all the axioms of a Newtonian space–time, except for the fifth one(Gyroscope
Principle).

5. Limit of the curvature operator

It is necessary to impose a supplementary condition on a degeneration(X, ε, g) to achieve
the limit fibre (X0, ḡ, ḡ

∗, ∇̄) satisfies the Gyroscope Principle. In this section we shall
examine this point.
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(5.1) Let us consider the relativecurvature operator, which is obtained by rising the last
covariant index in the curvature tensor,

R(D1,D2, ω3, ω4) := ω3(∇D1∇D2D4 − ∇D2∇D1D4 − ∇[D1,D2]D4),

whereD4 := g∗(ω4). The curvature operatorR is defined on the open subsetε > 0. The
following result characterizes the prolongability ofR in terms of the curvature two-forms
Ωij .

Lemma 5.2. Let (X, ε, g) be a degeneration of Lorentz metrics whose relative connection
∇ is prolongable. Then

(a) The limit(X0, ḡ, ḡ
∗, ∇̄) is a Newtonian space–time if and only ifΩij ≡ 0 mod(ε) for

any normal basis{Dα}.
(b) The relative curvature operatorR is prolongable if and only ifΩij ≡ 0 mod(ε) for any

normal basis{Dα}.

(recall that we use Latin indices for 1–3 and Greek indices for 0–3).

Proof.

(a) Let us consider the relative curvature tensorR as a(3,1)-type tensor:

R(E1, E2, ω3, E4) = ω3(∇E1∇E2E4 − ∇E2∇E1E4 − ∇[E1,E2]E4).

Let {θα} be the dual basis of{Dα}. The expression ofR with respect to these bases is

R =
∑
αβ

Ωαβ ⊗Dα ⊗ θβ.

Then the conditionΩij ≡ 0 mod(ε) for all indexesi, j is equivalent to the Gyroscope
Principle:R(−,−,−,Dj ) ≡ 0 mod(ε) for all indexj (recall thatΩ0j = εΩj0 ≡ 0).
UsingProposition 4.10the proof finishes.

(b) The result follows from the expression of the curvature operator in any normal basis:

R =
∑
αβ

1

δβ
Ωαβ ⊗Dα ⊗Dβ,

whereδ0 = 1 andδi = −ε. �

As a direct consequence we have the following.

Proposition 5.3. Let(X, ε, g) be a degeneration of Lorentz metrics whose relative connec-
tion ∇ is prolongable. Then the limit(X0, ḡ, ḡ

∗, ∇̄) is a Newtonian space–time if and only
if the curvature operatorR is prolongable.

In conclusion, the limit fibre of a degeneration of Lorentz metrics inherits the structure of a
Newtonian space–time if and only if the relative connection and the curvature operator are
prolongable.
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Let (X, ε, g) be a degeneration of Lorentz metrics. If the relative connection is pro-
longable we have showed inTheorem 4.8thatg ≡ dt2 mod(ε). Now, we shall obtain the
Taylor expansion ofg up to order 2 inε, when the connection and the curvature operator
are assumed to be prolongable.

Theorem 5.4. Let (X, ε, g) be a degeneration of Lorentz metrics whose connection∇ and
curvature operatorR are prolongable. Then there exists local coordinates(ε, t, x1, x2, x3)

such that

g ≡ (1 − 2uε)dt2 − ε
∑

dx2
i mod(ε2),

where u is a smooth function on the coordinates(t, x1, x2, x3).

Proof. LetN(X) → X be the bundle of normal bases (the fibre of this bundle over a point
x ∈ X is the six-manifold of all normal bases atx). Let {θ0, . . . , θ3} be the universal normal
basis of one-forms onN(X). By Proposition 4.7andLemma 5.2b, we know that

dθ0 ≡ 0, Ωij ≡ 0 mod(ε)

(recall that we use Latin indices for 1–3).
Using the second structure equation and the Relative FrobeniusTheorem 3.2one checks

immediately that the Pfaff system〈ω12, ω13, ω23〉 is integrable mod(ε).
Moreover, the first Bianchi identity gives

Ωi0 ∧ θ0 = 0 mod(ε),

i.e.,Ωi0 ≡ αi ∧ θ0 mod(ε) for some one-formαi . The second Bianchi identity gives

dΩi0 ≡ 0 mod(ε, ω12, ω13, ω23),

hence dαi ≡ 0 mod(ε, θ0, ω12, ω13, ω23). The Relative PoincaréLemma A.5′ impliesαi ≡
dfi mod(ε, θ0, ω12, ω13, ω23) for some functionfi , and then

(∗) Ωi0 ≡ dfi ∧ θ0 mod(ε, ω12, ω13, ω23).

Now we may prove that the following Pfaff system

P = 〈ω10 − f1θ0, ω20 − f2θ0, ω30 − fiθ0, ω12, ω13, ω23〉
is integrable mod(ε). From the second structure equation we have

d(ωi0 − fiθ0) ≡ Ωi0 −
∑
j

ωij ∧ ωj0 − dfi ∧ θ0
∗≡0 mod(ε, P ),

and by the Relative FrobeniusTheorem 3.2we conclude thatP is integrable mod(ε).
Therefore, restricting our attention to a suitable subvariety ofN(X) of codimension 6

(which corresponds with a section of the bundleN(X) → X) we get a (local) normal vector
field basis onX such that

ωi0 ≡ fiθ0, ωij ≡ 0 mod(ε)

for certain smooth functionsfi onX.



J.A. Navarro Gonzalez, J.B. Sancho de Salas / Journal of Geometry and Physics 44 (2003) 595–622607

Now, the first structure equation gives us that dθi ≡ 0 mod(ε), hence we may write
locally

θi ≡ dxi mod(ε).

On the other hand, we have

dθ0=−
∑

ω0i ∧ θi=−ε
∑

ωi0 ∧ θi ≡ −ε
∑

fiθ0 ∧ θi ≡ ε
∑

fiθi ∧ θ0 mod(ε2).

Differentiating we obtain 0= ddθ0 ≡ ε d(
∑
fiθi) ∧ θ0 mod(ε2), hence d(

∑
fiθi) ≡

0 mod(ε, θ0) and then
∑
fiθi ≡ df mod(ε, θ0) for some smooth functionf on X. In

conclusion, we have obtained that

dθ0 ≡ ε df ∧ θ0 mod(ε2).

This implies that

d(e−εf θ0) ≡ 0 mod(ε2),

so we may write

e−εf θ0 ≡ dt mod(ε2)

for certain smooth functiont , i.e.,

θ0 ≡ eεf dt ≡ (1 + εf )dt mod(ε2).

Takingũ = −f we have:

g = θ2
0 − ε

∑
θ2
i ≡ (1 − 2ũε)dt2 − ε

∑
dx2
i mod(ε2).

Sinceũ = u+ εν for some smooth functionu(t, x1, x2, x3), we finish the proof. �

Remark 5.5. A direct computation shows that the inverse ofTheorem 5.4holds.For any
degeneration of the formg ≡ (1 − 2uεr)dt2 − ε

∑
dx2
i mod(ε2) the relative connec-

tion ∇ and the curvature operatorR are prolongable. Then, byProposition 5.3, the limit
(X0, ḡ, ḡ

∗, ∇̄) is a Newtonian space–time. Moreover, the coordinates(t, x1, x2, x3) are a
Newtonian reference frame (Definition 2.3) on X0 andu is the corresponding potential
function.

As a consequence, it results thatany Newtonian space–time is locally the limit of some
degeneration of Lorentz metrics.

6. Newtonian limit of the Einstein tensor

In the relativistic case, the geometric structure of space–time determines the energy-impulse
tensor via the Einstein equation

T 2 = 1

8π
G2,
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whereG2 is the two-contravariant Einstein tensor. Given a degeneration(X, ε, g) of Lorentz
metrics, it is natural to ask when the relative Einstein tensorG2 is prolongable. We shall
examine this question in this section. First, we shall show that ifG2 is prolongable then

T̄ 2 := 1

8π
G2

|0

defines a matter tensor (Definition 2.5) on the limit fibreX0.
Let us consider a degeneration of Lorentz metrics(X, ε, g) whose relative contravariant

Einstein tensorG2 is prolongable. Then the Einstein operatorG := C1
1(G

2⊗g) and the co-
variant Einstein tensorG2 are prolongable. Therefore, the scalar curvaturer = −trace(G),
the Ricci operator Ric= G + (r/2)Id, and the Ricci tensorR2 = G2 + (r/2)g are also
prolongable.

Proposition 6.1. Let (X, ε, g) be a degeneration of Lorentz metrics such that the con-
travariant Einstein tensorG2 is prolongable. Then we have the following facts in the limit
fibreX0:

(a) The limit Ricci tensorR̄2 is proportional toḡ. As in(2.4)we writeR̄2 = 4πρ · ḡ.
(b) The limit scalar curvature is̄r = −8πρ.
(c) The limit covariant Einstein tensor is̄G2 = 8πρ · ḡ.
(d) If ∇ is prolongable thendiv∇̄ Ḡ2 = 0. (Therefore, T̄ 2 := (1/8π)Ḡ2 is a matter tensor

onX0.)

Proof.

(a) Let us writeḡ = ω̄ ⊗ ω̄ for some one-form̄ω onX0. Since

(matrixR̄2) = (matrixRic) ◦ (matrixḡ),

we conclude that̄R2 is proportional toω̄ ⊗ ω̄.
(b) Since

(matrixḠ) = (matrixḠ2) ◦ (matrixḡ),

we obtain that rad̄g ⊆ kerḠ, i.e.,Ḡ = D ⊗ ω̄ for certain vector fieldD onX0. Then
r̄ = −trace(Ḡ) = −ω̄(D). Moreover,

4πρω̄ ⊗ ω̄= R̄2 = C1
1(ḡ ⊗ Ric) = C1

1(ω̄ ⊗ ω̄ ⊗ (D ⊗ ω̄ + 1
2(r̄)Id))

= (ω̄(D)+ 1
2(r̄))ω̄ ⊗ ω̄ = −1

2(r̄)ω̄ ⊗ ω̄,

hencer̄ = −8πρ.
(c) G2 = C1

1(ḡ ⊗ Ḡ) = C1
1(ω̄ ⊗ ω̄ ⊗D ⊗ ω̄) = ω̄(D)ω̄ ⊗ ω̄ = −r̄ ḡ = 8πρḡ.

(d) Finally, the contracted Bianchi identity div∇ G2 = 0 induces, by continuity, the identity
div∇̄ Ḡ2 = 0 in the limit fibre. �

As a direct consequence ofPropositions 5.3 and 6.1we obtain the following.



J.A. Navarro Gonzalez, J.B. Sancho de Salas / Journal of Geometry and Physics 44 (2003) 595–622609

Theorem 6.2. Let (X, ε, g) be a degeneration of Lorentz metrics. Let us assume that the
connection∇, the curvature operatorR and the Einstein tensorG2 are prolongable. Then
the limit fibre(X0, ḡ, ḡ

∗, ∇̄, T̄ 2) is a Newtonian gravitation.

If one drops the assumption on the curvature operator in the above statement then one
obtains the following result (consequence ofPropositions 4.10 and 6.1).

Theorem 6.2′. Let (X, ε, g) be a degeneration of Lorentz metrics. Let us assume that the
connection∇ and the Einstein tensorG2 are prolongable. Then the limit fibre(X0, ḡ, ḡ

∗,
∇̄, T̄ 2) satisfies all the axioms of a Newtonian gravitation, except for the fifth, and its Ricci
tensorR̄2 is proportional toḡ.

Remark 6.3. Under the hypotheses of the above result, the limit fibre is very near to be a
Newtonian gravitation. In fact, by a result of Kunzle[9, Theorem 10]the fifth axiom of a
Newtonian space–time may be deduced from the condition “R̄2 proportional toḡ” if it is
assumed that the connection∇̄ is flat at infinity. In conclusion, one obtains the following
result.Let (X, ε, g) be a degeneration of Lorentz metrics such that the connection∇ and
the Einstein tensorG2 are prolongable, and∇ is “flat at infinity”. Then the limit fibre
(X0, ḡ, ḡ

∗, ∇̄, T̄ 2) is a Newtonian gravitation.

Now we shall characterize the prolongability of the Einstein tensorG2 in terms of the Taylor
expansion ofg in ε. We begin with the following.

Lemma 6.4. Let (X, ε, g) be a degeneration of Lorentz metrics and let{θ0, . . . , θ3} be a
normal basis of relative1-forms. The Einstein tensorG2 is prolongable if and only if the
following conditions hold

Ω12 ∧ θ3 −Ω13 ∧ θ2 +Ω23 ∧ θ1 ≡ 0 mod(ε),

Ω0i ∧ θj −Ω0j ∧ θi +Ωij ∧ θ0 ≡ 0 mod(ε2)

for any1 ≤ i < j ≤ 3.

Proof. The computation is simplified using a certain important formΘ introduced by Cartan
[3]. Let us consider the identity operator Id :T (X/I) → T (X/I) as a relative one-form
valued in the module of relative vector fields, and the curvature operatorR as a relative
two-form valued in the module of sections ofΛ2T (X/I). Then Id∧ R is a three-form
valued inΛ3T (X/I). Applying the Hodge’s star we finally obtain a relative three-form
valued in the module of relative vector fields

Θ := (Id ∧R)∗.
This form and the relative Einstein tensor are mutually determined by the formula

Θ = C1
1(ωX ⊗G2),

whereωX = ε3/2θ0 ∧ θ1 ∧ θ2 ∧ θ3 is the relative volume form. The above formula implies
thatG2 is prolongable if and only ifε−3/2Θ is prolongable.
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Now we examine the prolongability ofε−3/2Θ. We have

R = −
∑
α<β

ε−1Ωαβ ⊗Dα ∧Dβ,

∗(D1 ∧D2 ∧D3) = −ε3/2D0, ∗(D0 ∧D2 ∧D3) = −ε1/2D1,

∗(D0 ∧D1 ∧D3) = +ε1/2D2, ∗(D0 ∧D1 ∧D2) = −ε1/2D3.

Therefore,

ε−3/2Θ = ε−3/2(Id ∧R)∗ = −
∑
γ

∑
α<β

ε−5/2(θγ ∧Ωαβ)⊗ ∗(Dγ ∧Dα ∧Dβ)

= ε−1(θ1 ∧Ω23 − θ2 ∧Ω13 + θ3 ∧Ω12)⊗D0

+ ε−2(θ0 ∧Ω23 − θ2 ∧Ω03 + θ3 ∧Ω02)⊗D1

− ε−2(θ0 ∧Ω13 − θ1 ∧Ω03 + θ3 ∧Ω01)⊗D2

+ ε−2(θ0 ∧Ω12 − θ1 ∧Ω02 + θ2 ∧Ω01)⊗D3,

and the result follows. �

Theorem 6.5. Let (X, ε, g) be a degeneration of Lorentz metrics such that the relative
connection∇, the curvature operatorR and the Einstein tensorG2 are prolongable. Then
there exists local coordinates(ε, t, x1, x2, x3) on X such that the components of g are

gtt ≡ 1 − 2uεmod(ε2), gti ≡ 0 mod(ε2), gij ≡ −(ε + 2uε2)δij mod(ε3),

where u is a smooth function on the coordinates(t, x1, x2, x3).

Proof. As in the proof ofTheorem 5.4we consider the bundle of normal basesN(X) → X

and the universal normal basis{θ0, . . . , θ3} of one-forms onN(X). In the proof ofTheorem
5.4we have showed the following facts:

(a) The Pfaff system〈ω12, ω13, ω23〉 is integrable mod (ε).
(b) Ωi0 ≡ dfi ∧ θ0 mod(ε, ω12, ω13, ω23).
(c) The Pfaff system〈ω10−f1θ0, ω20−f2θ0, ω30−f3θ0〉 is integrable mod(ε, ω12, ω13,

ω23).
Moreover, the prolongability of the Einstein tensorG2 implies byLemma 6.4that

Ωij ∧ θ0 ≡Ω0j ∧ θi −Ω0i ∧ θj ≡ ε(Ωj0 ∧ θi −Ωi0 ∧ θj )
b≡ ε(dfi ∧ θj − dfj ∧ θi) ∧ θ0

mod(ε2, εω12, εω13, εω23) for any 1≤ i ≤ j ≤ 3. Therefore,

Ωij ≡ ε(dfi ∧ θj − dfj ∧ θi)
mod(ε2, εω12, εω13, εω23, θ0). SinceΩij ≡ 0 mod(ε) (by Lemma 5.2b) we conclude
that
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(d) Ωij ≡ ε(dfi ∧ θj − dfj ∧ θi)mod(ε2, εω12, εω13, εω23, εθ0).
From (c), restricting our attention to a suitable subvariety ofN(X) (of codimension 3),

we may assume that
(e) ωi0 ≡ fiθ0 mod(ε, ω12, ω13, ω23).

Now we may prove that the following Pfaff system of rank 3

P = 〈ωij − ε(fiθj − fj θi)〉, 1 ≤ i ≤ j ≤ 3

is integrable mod(ε2, εθ0). In fact, modulo(ε2, εθ0, P ) we have

dωij =Ωij − ωi0 ∧ ω0j −
∑
k

ωik ∧ ωkj = Ωij − ωi0 ∧ εωj0 −
∑
k

ωik ∧ ωkj

e≡Ωij − fiθ0 ∧ εfj θ0 −
∑
k

ε(fiθk − fkθi) ∧ ε(fkθj − fj θk)

≡Ωij
d≡ε(dfi ∧ θj − dfj ∧ θi),

and

d(εfiθj )= ε dfi ∧ θj − εfi

(
ωj0 ∧ θ0 +

∑
k

ωjk ∧ θk
)

≡ ε dfi ∧ θj−εfi
(
ωj0 ∧ θ0+

∑
k

ε(fj θk − fkθj ) ∧ θk
)

≡ ε dfi ∧ θj ,

hence d(ωij − ε(fiθj − fj θi)) ≡ 0 mod(ε2, εθ0, P ). By Proposition A.4we conclude
that P is integrable mod(ε2, εθ0). Therefore, restricting our attention to a suitable
section ofN(X) → X, we may obtain a normal basis satisfying

ωi0 ≡ fiθ0, ωij ≡ ε(fiθj − fj θi)mod(ε2, εθ0)

for anyi, j > 0.
Now, the argument given in the last part of the proof ofTheorem 5.4shows that∑

k

fkθk ≡ df mod(ε, θ0), θ0 ≡ eεf dt mod(ε2)

for certain functionsf, t . Takingũ := −f , it results

(∗) θ0 ≡ (1 − εũ)dt mod(ε2).

Moreover,

dθi = −ωi0 ∧ θ0 −
∑
k

ωik ∧ θk ≡ −fiθ0 ∧ θ0 −
∑
k

ε(fiθk − fkθi) ∧ θk

≡ −
∑
k

εfkθk ∧ θi ≡ −ε df ∧ θi ≡ ε dũ ∧ θi mod(ε2, εθ0),
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hence d(e−εũθi) ≡ 0 mod(ε2, εθ0). By Proposition A.6we have e−εũθi ≡ dxi mod
(ε2, εθ0) for certain functionsxi , and then

(∗∗) θi ≡ eεũ dxi ≡ (1 + ũε)dxi mod(ε2, εθ0) = (ε2, ε dt).

The proof concludes substituting (∗) and (∗∗) in the equalityg = θ2
0 − ε

∑
k θ

2
k . �

Remark 6.6. A similar result toTheorem 6.5is obtained by Rendall[16]. He assumes a
global condition (flatness at infinity) instead of our local condition on the prolongability of
the curvature operator.

Remark 6.7. A direct computation shows that the inverse ofTheorem 6.5holds.Let us
consider a degenerationg = gtt dt2 +∑

i gti(dt dxi + dxi dt)+∑
ij gij dxi dxj , where

gtt ≡ 1 − 2uεmod(ε2), gti ≡ 0 mod(ε2), gij ≡ −(ε + 2uε2)δij mod(ε3),

andu is a smooth function on the coordinates(t, x1, x2, x3). Then the relative connection∇,
the curvature operatorR and the Einstein tensorG2 are prolongable. ByTheorem 6.2, the
limit (X0, ḡ, ḡ

∗, T̄ 2) is a Newtonian gravitation. Moreover, the coordinates(t, x1, x2, x3)

are a Newtonian reference frame (Definition 2.3) onX0 andu is the corresponding potential
function.

Let us sketch the computation. From the hypothesis ong, one obtains a normal basis
{θ0, θ1, θ2, θ3} such that

θ0 ≡ eεf dt mod(ε2), θi ≡ eεf dxi mod(ε2, ε dt),

wheref = −u. By Proposition 4.7we know that the relative connection is prolongable.
Let df ≡ ∑

i fiθi mod(θ0). Computing the connection one-forms and the curvature
two-forms, one obtains

ωi0 ≡ fiθ0 mod(ε), ωij ≡ ε(fiθj − fj θi)mod(ε2, εθ0),

Ωi0 ≡ dfi ∧ θ0 mod(ε), Ωij ≡ ε(dfi ∧ θj − dfj ∧ θi)mod(ε2, εθ0).

Using Proposition 5.2b andLemma 6.4we conclude that the curvature operatorR and the
Einstein tensorG2 are prolongable.

Remark 6.8. The expression ofg given inTheorem 6.5is equivalent to the following pair
of equations:

g ≡ (1 − 2uε)dt ⊗ dt − ε
∑

dxi ⊗ dxi mod(ε2),

− εg∗ ≡ −ε∂t ⊗ ∂t + (1 − 2uε)
∑

∂xi ⊗ ∂xi mod(ε2).

Remark 6.9. By means of a suitable change of coordinates, we may assume that the
coordinates(t, x1, x2, x3) of Theorem 6.5coincide onX0 with an arbitrary Newtonian
reference frame. In other words, under the hypothesis ofTheorem 6.5, any Newtonian
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reference frame(t, x1, x2, x3) at a pointx0 ∈ X0 may be locally extended so as obtain a
local coordinate system(ε, t, x1, x2, x3) on X such that the components of g are

gtt ≡ 1 − 2uεmod(ε2), gti ≡ 0 mod(ε2), gij ≡ −(ε + 2uε2)δij mod(ε3),

whereu(t, x1, x2, x3) is the potential function of the given Newtonian reference frame.

SeeAppendix Bfor a global version ofRemark 6.9.

7. Examples

7.1. Degeneration of Schwarzschild metrics

Let us consider the Lorentz metric corresponding to an isolated massm in standard units:

(1 − 2r−1mc−2)dt2 − c−2(1 − 2r−1mc−2)−1 dr2 − c−2r2(dα2 + (sin2 α)dβ2),

wherec is the speed of light andr must be understood as the “distance” to such mass.
Takingε = c−2 we obtain the following degeneration of Lorentz metrics:

g = (1 − 2r−1mε)dt2 − ε(1 − 2r−1mε)−1 dr2 − εr2(dα2 + (sin2 α)dβ2).

Takingu = m/r we have

g ≡ (1 − 2uε)dt2 − ε(dr2 + r2 dα2 + r2(sin2 α)dβ2)

= (1 − 2uε)dt2 − ε
∑

dx2
i mod(ε2).

By Remark 5.5, the connection and the curvature operator are prolongable and the limit
fibre is a Newtonian space–time. Moreover,(t, x1, x2, x3) is a Newtonian reference frame on
this Newtonian space–time,u = m/r being the corresponding potential (it is the Newtonian
gravitation corresponding to a punctual mass). Note that the Einstein tensor is obviously
prolongable since it is null.

7.2. Degeneration of Friedmann–Robertson–Walker metrics

Let us consider the Robertson–Walker metric

dt2 − r(t)2 dσ 2,

where dσ 2 is the three-dimensional Riemannian metric of constant curvatureK, i.e.,

dσ 2 =
∑

du2
i

(1 + (K/4)
∑
u2
i )

2
.

Replacingr by r/c andK byK/c2, we obtain the following degeneration of Robertson–
Walker metrics:

g = dt2 − εr(t)2
∑

du2
i

(1 + (εK/4)
∑
u2
i )

2
,

whereε = c−2.
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Since we haveg ≡ dt2 mod(ε), the relative linear connection∇ associated tog is
prolongable (byTheorem 4.8). Computing the limit connection̄∇ we obtain

∇̄∂t ∂t = 0, ∇̄∂t ∂ui = r ′

r
∂ui , ∇̄∂ui ∂uj = 0.

Moreover, a direct computation gives us the following matrix for the relative curvature
operator in the basis{∂t ∧ ∂u1, ∂t ∧ ∂u2, ∂t ∧ ∂u3, ∂u2 ∧ ∂u3, ∂u3,∧∂u1, ∂u1 ∧ ∂u2}:

R =


− r

′′

r
I 0

0 −K + (r ′)2

r2
I


 ,

whereI is the 3× 3 identity matrix. Therefore,R is prolongable and we conclude by
Proposition 5.3that the limit fibre(X0, ḡ, ḡ

∗, ∇̄) is a Newtonian space–time.
The Ricci tensor of∇̄ is R̄2 = −3(r ′′/r)dt2. It follows that, in the limit Newtonian

space–time, the mass density is

ρ = − 3r ′′

4πr
.

Remark that in this Newtonian space–time the coordinates(t, u1, u2, u3) arenota New-
tonian reference frame, becauseḡ∗ = (1/r2)

∑
∂ui⊗∂ui . To get coordinates in a Newtonian

reference frame it is enough to putxi = rui . In this Newtonian reference frame(t, x1, x2, x3)

the intensity force is

F = −∇̄∂t ∂t =
(
r ′′

r

)
(x1∂x1 + x2∂x2 + x3∂x3).

As it is well-known, a Robertson–Walker metric describes an isotropic cosmology. Its
energy-impulse tensorT 2 = (ρ+p)D⊗D−pg∗ corresponds to a relativistic perfect fluid,
where the flow vector field isD = ∂t (written in the coordinates(t, u1, u2, u3)), the energy
density isρ = 3((r ′)2 + K)/8πr2 and the pressure isp = −(2r ′′r + (r ′)2 + K)/8πr2

(see[15, 12.11]). It is immediate to check that the relative energy-impulse tensorT 2 of
the degeneration is prolongable if and only ifp = 0 (i.e., the fluid is adust). In this case,
the Newtonian limit(X0, ḡ, ḡ

∗, ∇̄, T̄ 2) is a Newtonian perfect fluid with flow vector field
D = ∂t+(r ′/r)

∑
xi∂xi , mass densityρ = −3r ′′/4πr and pressurep = 0. This Newtonian

gravitation is the isotropic cosmology studied by Heckmann and Schucking[12].

7.3. Any Newtonian gravitation is the limit of a degeneration

A natural question is whether any Newtonian gravitation is the limit fibre of some suitable
degeneration of Lorentz metrics, in such way that the Newtonian matter tensorT̄ 2 is the
limit of the relativistic energy-impulse tensors. The answer is affirmative under certain
conditions. Let us show, without proofs, the degeneration.

Let us consider a Newtonian gravitation onR
4, where the Cartesian coordinates(t, x1, x2,

x3) are a Newtonian reference frame (Definition 2.3). Letu be the corresponding potential
function. We shall assume that the matter tensorT̄ 2 has compact support at each instant t
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and that u is the Newtonian potential corresponding to the mass densityρ. Let us write

T̄ 2 = ρ∂t ⊗ ∂t +
∑

wi(∂t ⊗ ∂xi + ∂xi ⊗ ∂t )+
∑

hij∂xi ⊗ ∂xj .

Then the desired degeneration is

g = gtt dt ⊗ dt +
∑

gti(dt ⊗ dxi + dxi ⊗ dt)+
∑

gij dxi ⊗ dxj ,

gtt = 1 − 2uε + aε2 + O(ε3), gti = Wiε
2 + O(ε3),

gij = −(ε + 2uε2)δij −Hijε
3 + O(ε4),

whereWi is the Newtonian potential corresponding to 4wi , Hij the Newtonian potential
corresponding to 4hij − (1/4π)(2(

∑
u2
k)δij + 4uuij ) anda = 6u2 − ∑

Hkk. (Notations:
uk = ∂u/∂xk, uij = ∂2u/∂xi∂xj .)

7.4. Newtonian gravitation defined by punctual masses

Let us considern curves

σi : R → R
4, σi(t) = (t, xi1(t), x

i
2(t), x

i
3(t)), 1 ≤ i ≤ n.

Let us consider a Newtonian gravitation defined on the complement of then curves in
R

4. We assume that the Cartesian coordinatest, x1, x2, x3 are a Newtonian reference frame
(2.3) with the following potential function:

u(t, x1, x2, x3) =
n∑
i=1

(
mi

ri

)
, ri =

√∑
k

(xk − xik(t))
2,

where the termsmi only depend ont , andri is the “spatial distance” toσi(t). We also
assume that the matter tensorT̄ 2 vanishes. This Newtonian gravitation will be said to be
defined byn punctual masses (following the trajectoriesσi(t) and with variable masses
mi(t)).

Note that the axioms of a Newtonian gravitation do not impose any condition to the
trajectoriesσi(t) neither to the massesmi(t). Although we prove in[13], using a global
version ofTheorem 6.5(stated inAppendix B), the following theorem which is closely
related to the classical EIH results[7,8].

Theorem 7.1. If a Newtonian gravitation defined by n punctual masses is the limit fibre of
a degeneration of Lorentz metrics then the massesmi(t) are constants and the trajectories
σi(t) obey the Newtonian law of motion.

See Ehlers[6] for more examples of Newtonian limits. The best result on the existence of
Newtonian limits is contained in Rendall[17].
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Appendix A. Relative differential forms

In this appendix we prove the relative versions of the Poincaré lemma and the Frobenius
theorem used in this paper. The theory of differentiable spaces (see[14]) provides the natural
context for this kind of results.

Lemma A.1. Let L be a free module of finite rank over a local ringO and let P, P ′ be free
submodules of L, both direct summands of rank r. IfΛrP = ΛrP ′, thenP = P ′.

Proof. SinceO is a local ring, any direct summand ofL is a free module. Therefore, we
may choose a basis{e1, . . . , en} of L such that{e1, . . . , er} is a basis ofP .

For anye′ ∈ P ′ we may writee′ = a1e1 + · · · + anen and

e1 ∧ · · · ∧ er ∧ e′ = ar+1e1 ∧ · · · ∧ er ∧ er+1 + · · · + ane1 ∧ · · · ∧ er ∧ en.
Sincee1 ∧ · · · ∧ er ∧ e′ ∈ ΛrP ∧ P ′ = Λr+1P ′ = 0 we conclude thatar+1 = · · · =

an = 0, hencee′ ∈ P . �

With the notations of the lemma, letI be an ideal ofO. ThenP/IP andP ′/IP′ are free
O/I -modules and direct summands ofL/IL. We writeP ≡ P ′ modI whenP/IP = P ′/IP′.
SinceΛrO/I (P/IP) = (ΛrOP)/IΛ

r
OP the above lemma implies the following.

Corollary A.2. With the notations of the lemma, let I be an ideal ofO. IfΛrP ≡ ΛrP ′ modI
thenP ≡ P ′ modI .

Let us recall the notations ofSection 3. Let ϕ : X → Y be a submersion. Given points
x ∈ X andy = ϕ(x) ∈ Y , let us consider the differential exterior algebra of the relative
forms (germs atx)

Ω•
x = C∞x ⊕Ω1

x ⊕Ω2
x ⊕ · · · .

Relative Frobenius Theorem A.3. Let P ⊆ Ω1
x be a relative Pfaff system atx and let

J ⊆ C∞y be an ideal. IfdP ≡ 0 mod(J, P ), i.e., dP = 0 in the quotient algebraΩ•
x /(J, P ),

thenP is integrable modulo(J ),

P ≡ 〈dz1, . . . ,dzr 〉 mod(J ).

Moreover, if P is also integrable modulo an idealJ ′ ⊆ J , then there exist germsz′i ≡
zi mod(J ) such that

P ≡ 〈dz′1, . . . ,dz′r 〉 mod(J ′).

Proof. Let us consider local coordinates(x1, . . . , xn, y1, . . . )such thatϕ(x1, . . . , y1, . . . ) =
(y1, . . . ). ThenΩ1

x = 〈dx1, . . . ,dxn〉. Let us writeP = 〈ω1, . . . , ωr 〉, wherer is the rank
of P . We prove the integrability ofP mod(J ) by induction on the relative dimensionn.
The initial casen = 1 is obvious.



J.A. Navarro Gonzalez, J.B. Sancho de Salas / Journal of Geometry and Physics 44 (2003) 595–622617

For the general case we may assume thatr < n since the caser = n is obvious. Then there
exists a relative vector fieldD such thatDx �= 0 andω1(D) = · · · = ωr(D) = 0. Taking
suitable coordinates we may assume thatD = ∂/∂xn. For clarity let us writet = xn, so that
D = ∂/∂t andΩ1

x = 〈dx1, . . . ,dxn−1,dt〉. Letλ = t (x). Let us consider the hypersurface
X′ ofX defined by the equationt = λ. Thenϕ : X → Y is the composition of the following
maps:

π : X → X′, π(x1, . . . , t, y1, . . . ) = (x1, . . . , λ, y1, . . . ), ϕ′ : X′ → Y, ϕ′ = ϕ|X′ .

Note that(x1, . . . , xn−1, y1, . . . ) are local coordinates onX′ and thatΩ1
X′,x = 〈dx1, . . . ,

dxn−1〉, whereΩ1
X′,x denotes the module of relative one-forms with respect to the map

ϕ′ : X′ → Y . Let i : X′ ↪→ X be the natural inclusion. By the induction hypothesis the
Pfaff systemi∗P onX′ is integrable mod(J ). Now we prove thatP ≡ π∗i∗P mod(J )
and the integrability ofP mod(J ) follows.

By hypothesis we have

dωj ≡ η1j ∧ ω1 + · · · + ηrj ∧ ωr mod(J )

for someηij ∈ Ω1
x . Therefore,

LDωj = iD dωj ≡
∑
i

ηij (D)ωi mod(J ),

hence

LD(ω1 ∧ · · · ∧ ωr) ≡ uω1 ∧ · · · ∧ ωr mod(J )

for certain smooth functionu. Replacingω1 by e− ∫ udtω1 we may assume that

LD(ω1 ∧ · · · ∧ ωr) ≡ 0 mod(J ).

Sinceωj (∂/∂t) = 0 we have

ω1 ∧ · · · ∧ ωr =
∑

α=(i1<···<ir )
gα dxi1 ∧ · · · ∧ dxir

for certain smooth functionsgα. Then

0 ≡ LD(ω1 ∧ · · · ∧ ωr) =
∑

α=(i1<···<ir )

∂gα

∂t
dxi1 ∧ · · · ∧ dxir mod(J ),

hence∂gα/∂t ≡ 0 mod(J ), i.e.,∂gα/∂t = ∑
fihi for certainhi ∈ J . Then

gα = ḡα(x1, . . . , xn−1, y1, . . . )+
∑

hi

∫
fi dt ≡ ḡα(x1, . . . , xn−1, y1, . . . )mod(J ),

whereḡα does not depend ont . As a consequence it results thatπ∗i∗(gα) ≡ π∗i∗(ḡα) =
ḡα ≡ gα mod(J ) and therefore

π∗i∗(ω1 ∧ · · · ∧ ωr) ≡ ω1 ∧ · · · ∧ ωr mod(J ).

FromCorollary A.2we conclude thatπ∗i∗P ≡ P mod(J ).



618 J.A. Navarro Gonzalez, J.B. Sancho de Salas / Journal of Geometry and Physics 44 (2003) 595–622

Now we prove the second part of the statement by induction on the relative dimension
n. It is assumed thatP is integrable mod(J ), i.e.,P ≡ 〈dz1, . . . ,dzr 〉 mod(J ) and thatP
also is integrable modulo an idealJ ′ ⊂ J .

With the previous notations we have that 0≡ dzi(D) = ∂zi/∂t mod(J ). The same
argument used forgα proves thatπ∗i∗(zj ) ≡ zj mod(J ).

Restricting to the hypersurfaceX′ we havei∗P ≡ 〈dz̄1, . . . ,dz̄r 〉 mod(J ), wherez̄j :=
i∗zj . By induction hypothesis there exist smooth functionsz̄′j ≡ z̄j mod(J ) such that
i∗P ≡ 〈dz̄′1, . . . ,dz̄′r 〉 mod(J ′). Therefore,

P ≡ π∗i∗P ≡ 〈dz′, . . . ,dz′r 〉 mod(J ),

wherez′j := π∗(z̄′j ) ≡ π∗(z̄j ) = π∗i∗zj ≡ zj mod(J ). �
In this paper, we have used the Frobenius theorem in the following slightly more general
version.

Relative Frobenius Theorem A.3′. Let J ⊆ C∞y be an ideal and letP = M ⊕ N ⊆ Ω1
x

be a relative Pfaff system at x such that N is integrable modulo(J ). If dM ≡ 0 mod(J, P )
then M is integrablemod(J,N), i.e.,

M ≡ 〈dz1, . . . ,dzr 〉 in Ω•
x /(J,N).

Proof. By Relative FrobeniusTheorem A.3the hypotheses imply thatP is integrable
mod(J ), i.e.,

P/JP = 〈dz1, . . . ,dzm〉 ⊆ Ω1
x /JΩ

1
x .

We conclude the proof taking quotient with respect toN

M/JM = 〈dz1, . . . ,dzm〉 ⊆ Ω1
x /(JΩ

1
x +N). �

Proposition A.4. Let ε : X → R be a submersion and let〈θ, ω1, . . . , ωk〉 be a relative
Pfaff system(at a pointx ∈ X with ε(x) = 0) of rankk + 1. If θ is exactmod(εr ) and

dωi ≡ 0 mod(ε2r , εrθ, ω1, . . . , ωk), 1 ≤ i ≤ k

then〈ω1, . . . , ωk〉 is integrablemod(ε2r , εrθ).

Proof. Sinceθ is exact mod(εr ) we may put

θ = dt + εrθ ′.

By the Frobenius theorem〈ω1, . . . , ωk〉 is integrable mod(εr )

〈ω1, . . . , ωk〉 ≡ 〈dx1, . . . ,dxk〉 mod(εr ).

Replacing the generatorsωi if necessary, we may assume that

(∗) ωi = dxi + εrω′
i .
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Sinceεrθ ≡ εr dt mod(ε2r ), the conditions dωi ≡ 0 mod(ε2r , εrθ, ω1, . . . , ωk) imply that
the Pfaff system〈dt, ω1, . . . , ωk〉 also is integrable mod(ε2r ), i.e.,

〈dt, ω1, . . . , ωk〉 ≡ 〈dt ′,dx′
1, . . . ,dx

′
k〉 mod(ε2r ).

Using the second part of Relative FrobeniusTheorem A.3we may putt ′ = t + εrv and
x′
i = xi + εrui . Hence, dx′

i = dxi + εr dui , and using(∗) it follows easily that

〈εr dt, ω1, . . . , ωk〉 ≡ 〈εr dt,dx′
1, . . . ,dx

′
k〉 mod(ε2r ),

and therefore

〈ω1, . . . , ωk〉 ≡ 〈dx′
1, . . . ,dx

′
k〉 mod(ε2r , εr dt) = (ε2r , εrθ). �

Let us again consider a submersionϕ : X → Y and respective pointsx ∈ X andy =
ϕ(x) ∈ Y . Let J be an ideal ofC∞y .

Relative Poincaré Lemma A.5. A relative p-formω ∈ Ω
p
x is closed modulo(J ) if and

only if it is exact modulo(J ).

Proof. Of course any exact mod(J ) p-form is closed mod(J ). For the inverse let us
consider local coordinates(x1, . . . , xn, y1, . . . ) such thatϕ(x1, . . . , y1, . . . ) = (y1, . . . ).
Let us also consider the relative vector fieldD := x1(∂/∂x1) + · · · + xn(∂/∂xn) and the
operatorH : Ω•

x → Ω•
x defined by the equalities

ω=
∑

j1<···<jp
fj1···jp (x1, . . . , xn, y1, . . . )dxj1 ∧ · · · ∧ dxjp ,

Hω=
∑

j1<···<jp

(∫ 1

0
tp−1fj1···jp (tx1, . . . , txn, y1, . . . )dt

)
iD(dxj1 ∧ · · · ∧ dxjp ).

The standard proof of the absolute Poincaré lemma shows that Id= H ◦ d + d◦H . To
conclude it is enough to remark thatHω ∈ JΩ

p−1
x wheneverω ∈ JΩ

p
x . If f ∈ (J ) =

JC∞x , i.e.,

f (x1, . . . , xn, y1, . . . ) =
∑
i

hi(y1, . . . )gi(x1, . . . , xn, y1, . . . )

for certainhi ∈ J , then∫ 1

0
tp−1f (tx1, . . . , txn, y1, . . . )dt

=
∑
i

hi(y1, . . . )

∫ 1

0
tp−1gi(tx1, . . . , txn, y1, . . . )dt ∈ (J ). �

Let us consider a more general version of the Poincaré lemma.
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Relative Poincaré Lemma A.5′. Let N be an integrable( modJ ) Pfaff system at x and let
ω ∈ Ω

p
x be a relative p-form. Ifdω ≡ 0 mod(J,N) thenω ≡ dω′ mod(J,N) for some

relative(p − 1)-formω′ ∈ Ωp−1
x .

Proof. SinceN is integrable mod(J ) we may writeN ≡ 〈dt1, . . . ,dtr 〉 mod(J ), wherer
is the rank ofN . Then(J,N) = (J,dt1, . . . ,dtn) (ideals ofΩ•

x ). This implies that

Ω•
x /(J,N) = Ω̃•

x /(J ),

whereΩ̃•
x is the algebra of relative forms with respect to the submersion(ϕ, t1, . . . , tr ) :

X → Y × R
r .

Now the result follows from Relative PoincaréLemma A.5applied toΩ̃•
x /(J ). �

Proposition A.6. Let ε : X → R be a submersion and letθ, ω be relative1-forms(germs
at a pointx ∈ X with ε(x) = 0). Let us assume thatθx �= 0, i.e., 〈θ〉 is a Pfaff system. Ifθ
is exact modulo(εr ) and

dω ≡ 0 mod(ε2r , εrθ)

thenω is exactmod(ε2r , εrθ).

Proof. Note that dω ≡ 0 mod(εr ). By the Poincaré lemma we may write

ω = dx + εrω′

for some relative one-formω′. By hypothesis, 0≡ dω = εr dω′ mod(ε2r , εrθ). Hence,
dω′ ≡ 0 mod(εr , θ). By the Relative PoincaréLemma A.5′, it results inω′ ≡ df mod(εr , θ)
for certain functionf . Therefore,

ω = dx + εrω′ ≡ dx + εr df ≡ d(x + εrf )mod(ε2r , εrθ). �

Appendix B. A global result

In this appendix, we shall obtain a global version ofTheorem 6.5. Let us begin with some
observations on Newtonian reference frames (Definition 2.3):

(a) The Newtonian potential corresponding to a Newtonian reference frame(t, x1, x2, x3)

is uniquely determined except by a summandh(t).
(b) Two Newtonian reference frames are related by a transformation of the type

t̄ = a + t, x̄i = fi(t)+
∑
j

aijxj ,

wherea is a constant and(aij ) is an orthogonal matrix of constant coefficients.

Let (X, ε, g) be a degeneration of Lorentz metrics such that the relative connection∇,
the curvature operatorR and the Einstein tensorG2 are prolongable. ByTheorem 6.2, the
limit fibre X0 inherits the structure of a Newtonian gravitation.
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Lemma B.1. Let(t̄ , x̄1, x̄2, x̄3) be a local Newtonian reference frame onX0 and letū be the
corresponding potential function. These functions may be extended locally so as to obtain a
local coordinate system(ε, t̄ , x̄1, x̄2, x̄3) on X, such that the coefficients of g in that system
are

ḡtt ≡ 1 − 2ūεmod(ε2), ḡti ≡ 0 mod(ε2), ḡij ≡ −(ε + 2ūε2)δij mod(ε3).

Proof. By Theorem 6.5there exists a local coordinate system(ε, t, x1, x2, x3) onX such
that the corresponding coefficients ofg are

gtt ≡ 1 − 2uεmod(ε2), gti ≡ 0 mod(ε2), gij ≡ −(ε + 2uε2)δij mod(ε3).

Moreover, the restriction of(t, x1, x2, x3) onX0 is a Newtonian reference frame,u being
the corresponding potential function (seeRemark 6.7). Recalling the above observations
(a) and (b), it is easy to check that the desired coordinate system is obtained by means of a
suitable transformation

t̄ = a + t + εh(t), x̄i = fi(t)+
∑
j

aijxj . �

Theorem B.2. Let (t, x1, x2, x3) be a global Newtonian reference frame onX0 such that
the slicest = const. are simply connected. This reference may be extended so as to obtain
a coordinate system(ε, t, x1, x2, x3) on a neighborhood ofX0, such that the corresponding
coefficients of g are

gtt ≡ 1 − 2uεmod(ε2), gti ≡ 0 mod(ε2), gij ≡ −(ε + 2uε2)δij mod(ε3).

Proof. The previous lemma says that the desired extension locally exists. This local exten-
sion is not unique. It is easy to check that two extensions are related by a transformation of
the type

t̄ ≡ t + εamod(ε2), x̄i ≡ xi + ε


hi(t)+

∑
j

hij (t)xj


 mod(ε2),

wherea is locally constant,hi(t) are locally smooth functions ont , andhij (t) are locally
smooth functions ont such thathij (t) = −hji (t). Therefore, the obstruction to the existence
of a global extension yields in the cohomology groupH 1(X0,R ⊕ O6) = H 1(X0,R) ⊕
H 1(X0,O)6, whereR is the sheaf of locally constant functions andO is the sheaf of smooth
functions ont (locally). Since the slicest = const. are simply connected, we have thatX0
is also simply connected and thenH 1(X0,R) = 0.

Finally we have to show thatH 1(X,O) = 0. LetΩp

X0/R
be the sheaf onX0 of relative

p-forms with respect to the submersiont : X0 → R. Let us consider the relative De Rham
complex of sheaves

0 → O→ C∞X0

d→Ω1
X0/R

d→Ω2
X0/R

d→Ω3
X0/R

→ 0.
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This sequence is exact by the Relative PoincaréLemma A.5. The sheavesΩp

X0/R
are

C∞X0
-modules hence they are soft (see[11]) and the above sequence is an acyclic resolution

of O. Therefore,

H 1(X0,O) =
{

relative closed 1-forms onX0

relative exact 1-forms onX0

}
,

and we have to prove that any relative closed one-formω is exact. Letσ : R → X0 be a
smooth section oft : X0 → R. For any point(t, x) ∈ X0 we define

F(t, x) =
∫
γ

ω,

whereγ is an arc joiningσ(t) and(t, x) contained in a slicet = const. Since the slice
is simply connected, the above integral does not depend on the chosen arc and we have
ω = dF . �
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