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Abstract

We consider a smooth one-parameter family of four-dimensional maniflds > 0, each one
endowed with a covariant metrig. It is assumed thaf, is a Lorentz metric for each > 0, i.e.,
the signature og, is (+, —, —, —) for ¢ > 0, while the limit metricgp on X is assumed to be
degenerated ofrank 1, i.e., the signaturggd$ (+, 0, 0, 0). We characterize when the limit manifold
Xo inherits the geometric structure of a Newtonian gravitation. The limit mankgld a Newtonian
gravitationifand only if there exist the limits of the Levi-Civita connectianthe curvature operator
R. and the contravariant Einstein tenggf ase — 0. Moreover, the existence of these limits is
characterized in terms of the Taylor expansion of the farf@ly with respect to the parameter
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1. Introduction

Works of Cartar]2,3] and Trautmarj18] show that the Newtonian gravitation may be
geometrically formulated as a four-dimensional manifold endowed with a covariant getric
ofrank 1 (the time metric), a contravariant megioofrank 3 (the space metric), a symmetric
linear connectiorV and a contravariant metrif? (the matter tensor) satisfying certain
conditions. This geometric formulation is the starting point of the rigorous study of the
relations between Newtonian gravitation and general relativity, because any Lorentz metric
g also defines a contravariant metgit (the dual metric), a symmetric linear connecthdn
(the Levi-Civita one) and a matter tensor (via the Einstein equation). Hence, it is full-sense
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to ask whether a given Newtonian gravitation is a deformation of certain Lorentz metrics
or whether the limit of a sequence of Lorentz metrics is a Newtonian gravitation.

This paper is devoted to the study of the conditions that a family of Lorentz metrics
must satisfy in order to have a Newtonian limit. Inspired in Ehlers’ frame thiglet§] and
Rendall’s papefl6], we shall consider a smooth one-parameter family of four-dimensional
manifoldsX,, ¢ > 0, each one endowed with a covariant megticlt is assumed that; is
a Lorentz metric for each > 0, i.e., the signature q¢f; is (+, —, —, —) for ¢ > 0, while
the limit metricgg on Xg is assumed to be degenerated of rank 1, i.e., the signatygie of
is (+, 0, 0, 0). This type of family will be called alegeneration of Lorentz metrick is a
family of Lorentz metrics whose light cones open up to hyperplanes. Usually the parameter
¢ is physically interpretetated as= ¢~2, wherec is the speed of light in standard units, so
thatc — oo ase — 0.

The family of dual metric$g; '} has no limit but, in the generic case, the limit contravariant
metricg™ := lim,_o(—¢g;) exists and it has rank 3. We shall only consider degenerations
of Lorentz metrics whose limit contravariant metgicexists and it has rank 3. Therefore, the
limit fibre X of a degeneration of Lorentz metrics has a time metrie go = lim._.o g
and a space metrig* := lim,_,o(—eg}).

The purpose of this paper is to characterize when the limit maniXgldnherits the
structure of a Newtonian gravitation. For asty> 0 we consider on the Lorentz manifold
(X, g¢) the Levi-Civita connectiorV,, the curvature operatdR, : A2TX, — A%TX,
and the contravariant Einstein tenﬁf. We shall show that the limit manifol&g is a
Newtonian gravitation if and only if there exist the limits'6f, R, andG§ ase — 0.

Let us resume the steps of our analysis. The first step is the characterization of the
existence of the limit connection. The result is elementary and well known.

Theorem 1.1 (Kunzle[10]). The limit connectio’V := lim,_o V, exists if and only if the
limit metric g is locally the square of an exact differentiéile., g = dr?).

In other words, the existence of the limit connection is equivalent to the local existence of
anabsolute timen XJ.

Now let us assume that the limit connecti®nexists. The second step in our analysis
determines when the limit manifoldXo, g, g*, V) is aNewtonian space-timee., there
exist local coordinate§, x1, x2, x3) on Xg such that

gzdt®dt, g*:axl®ax1+ax2®ax2+ax3®ax37
Vi, Ox; = Vi, 00, =0, i, j =1-8 V0 = —(0xyt)dzy — (Optt) 0y — (332t Doy

whereu(t, x1, x2, x3) isasmooth function. The coordinate system1, x2, x3) is said to be
aNewtonian reference franendu is the correspondingotential functionThe differential
equations of geodesic lines ¥fare just

d?x; _ Ou
d?s o 0x; ’
so that they coincide with the Newtonian equations of motion of freely falling bodies.

Therefore, the notion of a Newtonian space—time corresponds with the classical Newton
theory associated to a potential function. We obtain the following characterization.
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Theorem 1.2. Let us assume that the limit connectigrexists. Then the following condi-
tions are equivalent

(@) (Xo, g, g%, V) is a Newtonian space—time
(b) The limit curvature operatolim._,o R, exists
(c) There exist suitable local coordinateés ¢, x1, x2, x3) such that

g = 8t dr? + thi (dt dx; + dx; dr) + Z gij dx; dx;,
i i
where
gt =1—2ue+0(c?),  gi=0(?),  gj=—Bje+O0(?),

u(t, x1, x2, x3) being a smooth functiorfThis function u is just the potential function
of the limit Newtonian space-tin)e

Note that if we take = ¢ 2 in the above expression (and the term?) are neglected)

then we obtain the metrig = (1 — 2uc=2) dr2 — ¢=2Y" dx?2. This metric is typically used

in textbooks to show the Newtonian theory as an approximation of the relativistic theory in

a imprecise manner; the above characterization gives a rigorous formulation of this fact.
In the following step of our analysis, we determine when there exists the limit of the

contravariant Einstein tenson of g, ase — 0. This is a central question since the

limit 72 = lim._.o(1/87)G? provides a matter tensor for the limit Newtonian space—time,

satisfying the usual dynamical conditions. In such case, one obtains the full structure of a

Newtonian gravitatioron the limit manifold. Our result is the following.

Theorem 1.3. Letus consider a degeneration of Lorentz metrics such that the limit connec-
tion exists and the limit manifoldXo, g, g*, V) is a Newtonian space—tin{equivalently

the limit curvature operator existsThen the limit ol ase — 0 exists if and only if there
exist suitable local coordinates such that

gt = 1 — 2ue + O(e?), gi = O(&?), gij = —3ij (e + 2ue?) + O(e?).

This expression for the metrig. is also obtained by Renddll6]. He assumes a global
condition (flatness at infinity) instead of our local condition on the existence of the limit
curvature operator.

The above result has a remarkable application. Using the obtained expression for the
metricg,, we derived if13] the Newtonian motion law for punctual bodies from the field
equations, in the following sense. Let us consider a Newtonian gravitatierpofctual
variablemasses followingrbitrary trajectories. Let us assume that this Newtonian gravita-
tion is the limit of a degeneration of Lorentz metrics. In particular the limit Einstein tensor
vanishes, i.e., lim. g G§ = 0, on the complementary set of the punctual masses. Then
these punctual masses are constant and their trajectories obey the Newtonian law of motion.
This result is contained in the classical EIH papers [&&éor a clearer exposition) under
certain implicit assumptions on the poIes@ﬁ, which are removed in our formulation.

In this paper, any function, manifold, exterior form, etc., is assumed to 6& aflass.
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2. Preliminaries: Newtonian gravitation

Definition 2.1. A Newtonian space—timis a four-dimensional smooth manifold en-
dowed with a two-covariant symmetric metrgc(the time metrig, a two-contravariant
symmetric metri* (thespace metrirand a torsionless linear connectigrsatisfying the
following local conditions.

Axiom 1. At any point ofX the signature o§* is (+, 0, 0, 0).

Hence, the radical ¢, i.e., the kernel of the polariy : 7, X — T;}X,isathree-dimensional
vector space at each pointe X. Vectors in this radical are said to bpatial vectors

Locally we havez = & ® @ for some one-fornd well-defined up to a sign (for simplicity
we do not consider a time orientation). The radica$ ¢fe., the space of spatial vectors) is
the incident space wit.

Axiom 2. At any point ofX the signature o* is (0, +, +, 4), and the radicals gf* and
g are mutually incidentz*(v) = 0.
Hence,g* defines an inner produston spatial vectors:

Vi V2 = g% (w1, w2),

wherew; is any one-form such that*(w;) = V;.

Axiom 3. The parallel transport preservgsindg*: Vg = 0 andvg* = 0.

The conditionVg = V(o ® @) = 0 implies do = 0. Therefore, locally we may write
g =0dr ®dr.

Let R(D1, D2, D3) := Vp,Vp,D3 — Vp,Vp, D3 — Vp, n,] D3 be the curvature tensor
of V. Let us define the following2, 2)-type tensor

R5(1, D2, w3, Da) := w3(R(D1, D2, D)), D1 = g*(w1).
Axiom 4. Conservative character of gravitatory forces:
R%(wl, D2, w3, Dg) = R%(w& Dy, w1, D).

Axioms 1-4define a Newtonian manifold in the sense of Newton—Cartan theoryi8Be
Our concept of a Newtonian space—time requires one more axiom.

Axiom 5. Gyroscope PrincipleR (D1, D>, V) = 0 whenevelV is a spatial vector.

In particular, this axiom implies the Euclidean character of any spatialssticeonst.

(2.2) One may easily show that these five axioms are equivalent to the existence of local
coordinatest, x1, x2, x3) such that

g =dr ®dr, 8% = 0x; ® Oy + xy ® xp + iz ® s,
6Bxi ax,~ = 68, ax_,- =0, i J= 1-3 6B, 0y = _(8x1u)ax1 - (axzu)axg - (axsu)axg
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for some functiom(_t,xl, x2,x2), whered, := 9/9, andd,, := 9/dx;. The above last
equality, saying thaV,, d; is a gradient vector, is a consequencégiom 4; this motivates
the given denomination for such axiom.

Definition 2.3. A system of local coordinatgs, x1, x2, x3) on aNewtonian space—time is
said to be a Newtonian reference fraihéhe equalities (2.2) hold.

Given a Newtonian reference frame, the functidn x1, x2, x3) is named theotential
and its spatial gradient := > 9y, (u)dy, = —%, d9; is named thdorce intensity Both
concepts depend on the Newtonian reference frame.

(2.4) Given a Newtonian space—time, it is easy to check that the Ricci tetjsof V
always is proportional tg. The proportionality coefficient is denoted by 4
Ry=4np-g=4np- dr?,

and this functiorp is said to be thenass densityPoisson’s equatioholds in any Newtonian
reference frame:
2u  9%u 9%

Au=—+—+—
ax% Bxg 8x§

= —A4mp.

Moreover, the differential equations of geodesic line¥ afre just
d?x; _ Ou
d?s - 0Xx; ’

so that they coincide with the Newtonian equations of motion of freely falling bodies when
u is the gravitatory potential.

Definition 2.5. A matter tensoon a Newtonian space—tini& , g, g*, V) is a two-contra-
variant symmetric tensdf? such that

(a) qu@ TZ = 0,

(b) Ry = 4n Ty,
whereTa(D1, D) := T2(3(D1), §(D2)).

The condition (b) inDefinition 2.5may be written in the same form as the relativistic
Einstein equation:

Ry, =87 (7_"2 — %ag_) ,

wherea denotes the total contraction §f2 72 (it coincides with the mass densiyin the
Newtonian case).

(2.6) On a Newtonian space—time this condition (bpiafinition 2.5is equivalent to the
equation7?(dr, dr) = p. Now let us consider the vector field := (1/p)C}(T? ® dt).
Then we may write in any Newtonian reference frame

T?=pU@®U + ) hijdy, ® dy;, U =0 + 20y, + v20x, + 030,



600 J.A. Navarro Gonzalez, J.B. Sancho de Salas/Journal of Geometry and Physics 44 (2003) 595-622

for certain smooth functions;; andv,. The tensor’2 may be interpreted as the matter
tensor of a fluid[J being the flow of the fluidp the mass density, arid 4o, ® dy; isthe

stress tensor. The condition gi7'2 = 0 is equivalent to the pair of classical equations

continuity equation :  digU) = 0,
Euler equation : pVyU = —div (Z hijdy; ® 8xj) )

Definition 2.7. A Newtonian gravitatioiis a Newtonian space—tint&, g, g*, V) endowed
with a matter tensor 2.

A Newtonian perfect fluidf mass density and pressurg is a Newtonian gravitation
whose matter tensor has the form

T2 = pU @ U + pg*.

For the sake of completeness, we finish these preliminaries defining the concept of inertial
reference frame, although it will not be used in the rest of this paper. Given a Newtonian
space—-time, a globally defined Newtonian reference frama, x», x3) is said to bénertial
if its corresponding force intensity vanishes at infinity or, equivalently, its potential
function u coincides with the Newtonian potential defined by the mass deps(it is
assumed that has compact support at each instant).

Itis possible to show the existence of inertial reference frames when the curvature tensor
R vanishes at infinity.

3. Relativetensors

In this paper we shall use Cartan’s exterior differential calculus in a more general setting
thanitis usual. We shall consider “relative” differential forms with respect to a smooth map
¢ : X — Y instead of the usual differential forms on a smooth manifold. Now we shall
introduce the definitions and we shall state the relative versions of the Poincaré lemma and
the Frobenius theorem.

Let us consider a submersign: X — Y. For anyy € Y we denoteX, .= o 1(y).
Sinceg is a submersion the fibrés, are subvarieties of, so thaip may be interpreted as
a smooth family of varietiegX ,} parametrized by .

A tangent vector field on X is said to be relative ip,. (D) = 0, i.e.,D is tangent to the
fiores X, of . In other words, relative vector fields are just smooth cross-sections of the
relative tangent vector bund®(X/Y) defined by the following exact sequence:

0— T (X/Y) = TXZp*(TY) — 0.

More generally, aelative tensor field” of type(p, ¢) on X is a smooth cross-section of
the vector bundle

T*(X/V)® T (X/1)®",
whereT*(X/Y) denotes the dual bundle &f(X/Y).
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A relative tensor field” on X defines by restriction a tensor fielgl, on X . Note thatl’
is fully determined by the tensors fields,, so that a relative tensor fiefd must be viewed
as a smooth familyT}, },cy of tensor fields on the manifolds(y},cy.

Let us consider eelative p-formw, i.e., a smooth cross-section4f 7*(X/Y). Theexte-
rior differential of w is the relative p+1)-form dew defined by the equalitydw)|, = d(w},).

Given pointsx € X,y = ¢(x) € Y, let us denote bg3° (resp.C3°) the ring of germs
of smooth functions orX (resp.Y) atx (resp.y). Let 27 be theC°-module of relative
p-forms (germs). Let

2 =Colen’e. ..

be the differential exterior algebra of the relative forms.
Let J be an ideal of’{". Let us consider as a subset of?” via the natural inclusion
CP—=%¢CY°. Arelative p-form w is said to beexactmodulo (/) if

o = dw’ mod(J)
for some relative(p — 1)-form o', i.e.,w and dv’ have the same class i /J - 2F ¢

£23/0).
A relative p-form w is said to beclosedmodulo (/) if
dw = 0mod(J).

Relative Poincaré Lemma 3.1. A relative p-formw e 227 is closed moduldJ) if and
only if it is exact moduldJ).

A relative Pfaff systeratx) is a subomodule® of 21 such that2l/P is a freeC>°-module,
i.e., P is a direct summand 012}. A relative Pfaff systenP is said to be integrable P is
generated by exact relative one-forms= (dx1, ..., dx;). More generally, a relative Pfaff
systemP is said to bentegrablemodulo (/) if P is generated by exact mod)relative
one-forms.

Relative Frobenius Theorem 3.2. Let P be a relative Pfaff systemdf = 0 mod(J, P),
i.e, dP = 0in the quotient algebra2?/(J, P), then P is integrable modul@/),
P = (dx1, ..., dxz) mod(J).

Moreover if P is also integrable modulo an idedl’ < J, then there exist germs
x; mod(J) such that

= (dxy, ..., dx;) mod(J").

These results have essentially the same proofs that the classical versions have. See details
in Appendix A

4. Degenerations of Lorentz metrics

Let X be a five-dimensional smooth manifold (with boundary) andletX — I =
[0, c0) be a submersion. Each fibté. on e € I is a four-manifold, so that the map
¢ : X — I may be interpreted as a one-parameter smooth faiily of four-manifolds.
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Let Dx be theC* (X)-module of all relative vector fields oK. A relative linear con-
nectionV on X is defined to be &°-linear map

Dy—~>Homg(Dyx, Dx), D +— Vp

satisfying the usual condition/p (fD") = (Df)D’ + f(VpD’).

Clearly any relative linear connection defines, by restriction, a linear connectigp
on each fibreX, of X — I, so that a relative connectiovh must be viewed as a smooth
family {V|¢} of linear connection on the manifoldX.}.

Definition 4.1. A relative tensor field” one : X — I, defined on the open subset- 0,

is said to beprolongableto X if it is the restriction of some relative tensor field defined on
the total space&X. The restriction of this last tensor to the fikkg will be said to be the
limit tensorof T, and it will denoted byfjo.

Definition 4.2. A relative tensor fieldg one : X — [ is said to be alegeneratiorof
Lorentz metrics if

(a) Its restrictiong| to any fibreX., ¢ > 0, is a Lorentz metric, i.e., it has signature
(+, —, —, —) at any point ofX..

(b) Its restrictiong|o to X¢ is a metric with signaturé+, 0, 0, 0) at any point ofXo.

(c) Let g* be the relative dual metric, which is defined on the open subsetO. It is
assumed thatg* is prolongable and that its limit g),0 on Xg is @ metric with signature
(0, —, —, —) at any point ofXg.

Therefore, a degeneration is a one-parameter family of Lorentz mégrigsvhose limit
metricsg := g0, 8" := (—&g™) |0 are degenerate metrics of respective signaturd, 0, 0)
and(0, +, 4+, +). These metricg, g* satisfyAxioms 1 and 2of a Newtonian space—time.
Whene > 0, each fibreX, is a relativistic space—time, whege. is the time metric and
—sgf‘s is the space metric, so that the parameteay be physically interpreted as= ¢ 2,
wherec is the light speed.

Proposition 4.3. Let (X, ¢, g) be a degeneration of Lorentz metrics. Then the matrix of g
in some local basi$Dg, D1, D», D3} of relative vector fields is
1

Proof. Since(eg™)|0 has signatur¢0, —, —, —) at any point ofXy it is easy to check that
there exists a local basf®q, D1, D>, D3} of relative vector fields oX such that

eg" =aeDo® Do — D1 ® D1 — D2 ® D — D3 ® D3
for some smooth functiom on X. Then, in the dual basi®g, 61, 62, 63}, we have

g=a 0 ® 60— b ® 61 — 6> R 0 — £03 Q Ba.
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Since the signature ofjo is (+, 0,0, 0), we obtain thatu = be~1, wherea > 0.

Taking Dy = /aDo andD; = D; for i = 1-3, we obtain a basis satisfying the required
condition. 0

Definition 4.4. Let (X, ¢, g) be a degeneration of Lorentz metrics. {8, ..., D3} be a

basis of relative tangent vectors at a pairgnd let{6, . . ., 63} be the corresponding dual
basis. These bases are said tombamalif
3 3
gr=0080—ex)) 6806, (6" =ex)Do®Do— Y D;® D;.
1 1

A basis of relative vector field is said to be normal if it is normal at each pBioposition
4.3 states the local existence of normal bases.

Let (X, ¢, g) be a degeneration of Lorentz metrics and Yebe the unique relative
torsionless linear connection, defined on the opereset 0, such thatvg = 0. The
restriction Ve of V to any fibreX., ¢ > 0 coincides with the Levi-Civita connection
associated to the corresponding Lorentz meijic

Definition 4.5. We shall say thaV is prolongableif it is the restriction of a relative linear
connection defined on the total spaceThe restriction of this connection to the fibkg
will be said to be thdimit connectiorof V, and it will denoted byv)q.

We shall give a necessary and sufficient condition for the relative conne¥titsm be
prolongable. Previously, let us recall the Cartan structure equations.

(4.6) Let(X, ¢, g) be adegeneration of Lorentz metrics. Given a local Hagiof relative
one-forms, let us consider the corresponding connection one-fasgg and curvature
two-forms {§2.4} with respect to the relative connectioh Of course, these forms are
relative and they are defined in the open sulzset 0. We have the Cartan structure
equations (using the standard matrix convention)

d9 +w A6 =0, do+wAw=2$,
and the Bianchi identities

2760 =0, RAw—owAR=dS2.

Moreover, if{6,} is a normal basis then we have

wjj = —wiji, 25 = —82j, W0y = EWy0, 200 = €8240
(Latin indices shall assume the values 1-3 while Greek indices shall run from 0 to 3).
Proposition 4.7. Let (X, ¢, g) be a degeneration of Lorentz metrics. The relative linear
connectiorV is prolongable if and only ifldg = 0 mod(e) for any local normal basi$9, }
of relative1l-forms

Proof. If V is prolongable the first structure equation gives

dog = —Zw()k A = —SZa)ko/\Qk = 0mod(s).
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Reciprocally, if do = 0 mod(e) we prove that the connection one-formgg are pro-
longable and, therefor®] is prolongable. Let us write

wap = ALy
Let{D,} be the dual basis db,} and lets, := g(Dy, Dy), i.€.,60 = 1 ands; = —e¢ for
i = 1-3. Now the one-forms,s are prolongable because of following standard formula
for the coefficients] ;:

8QA(}Y//3 = %[(Sa d@a(Dﬂ7 Dy) — 8)/ de(Da, Dﬂ) —+ 8/3 d@ﬂ(Dy, Da)]' O
FromProposition 4.7and the Relative Poincatéemma 3.1one obtains directly.

Theorem 4.8 (Kunzle[10]). The relative linear connectiow associated to a degeneration
(X, ¢, g) is prolongable if and only if there exists locally a smooth function t such that

¢ = dr>mod(e).

(4.9) Now we shall investigate the structure of the limit fibfgof a degeneratio¥, ¢, g)
of Lorentz metrics.

By definition of a degeneration, the limit metrigs:= gjo, §* = (—&g*)|o satisfy
Axioms 1 and 2of a Newtonian space—time.

Now let us also assume that the relative symmetric linear conneetisrprolongable,
so that it defines a symmetric linear connection= Vio on Xp. On the open subset> 0
we haveVg = 0 andV(eg*) = ¢(Vg*) = 0; by continuity, it follows thatvg = 0 and
Vg* = 0 (Axiom 3).

Finally, let R be the (relative) curvature tensor Bfand let us consider th@, 2)-type
tensor

R3(w1, D2, w3, Da) := w3(R(D1, D2, D)), D1 = g*(w1).

This is a relative tensor, defined on the open subset 0, and it satisfies the usual
symmetry conditionR3(w1, Dy, w3, Da) = R3(ws3, Da, w1, D). Itis clear that—eR3 is
prolongable, because so areg* andR. Hence, by continuity, the tenséé = (—sR§)|o
on X also satisfies the above symmetry conditiémiom 4).

In conclusion, we have proved the following.

Proposition 4.10. Let (X, ¢, g) be a degeneration of Lorentz metrics. If the relative con-
nectionV is prolongable then the limit fibre(Xo, g = g0, &* = (—€g%)0, V = V)o0)
satisfies all the axioms of a Newtonian space-timx&ept for the fifth onéGyroscope
Principle).

5. Limit of the curvature operator

Itis necessary to impose a supplementary condition on a degenetafiong) to achieve
the limit fibre (Xo, g, g*, V) satisfies the Gyroscope Principle. In this section we shall
examine this point.
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(5.1) Let us consider the relativairvature operatarwhich is obtained by rising the last
covariant index in the curvature tensor,

R(D]_, D2, w3, CL)4) = w3(levD2D4 - VDsz:|_D4 - V[D]_,Dz] D4)7

whereD, := g*(w4). The curvature operatd® is defined on the open subget- 0. The
following result characterizes the prolongability®fin terms of the curvature two-forms
£25.

Lemmab.2. Let(X, ¢, g) be a degeneration of Lorentz metrics whose relative connection
V is prolongable. Then

(@) The limit(Xo, g, g*, V) is a Newtonian space-time if and only?fj = 0 mod(e) for
any normal basi$D,}.

(b) The relative curvature operatdk is prolongable if and only if2; = 0 mod(e) for any
normal basig D,,}.

(recall that we use Latin indices for 1-3 and Greek indices for 0-3).

Proof.
(a) Letus consider the relative curvature tenRa@s a(3, 1)-type tensor:
R(E1, E2, w3, E4) = w3(VE,VE,E4 — VE,VE Ea — Vg, By Ed).
Let{6,} be the dual basis 4D, }. The expression ak with respect to these bases is
R = Zfzaﬂ ® Dy ® 6.
of

Then the conditio2;; = 0 mod(e) for allindexes, j is equivalent to the Gyroscope
Principle:R(—, —, —, D;) = Omod(e) for all index j (recall that2g; = ££2;0 = 0).
UsingProposition 4.1@he proof finishes.

(b) The result follows from the expression of the curvature operator in any normal basis:

1
Rzzggaﬁ@)Da@Dﬁ,
ap

wheresp = lands; = —e. O
As a direct consequence we have the following.

Proposition 5.3. Let(X, ¢, g) be a degeneration of Lorentz metrics whose relative connec-
tion V is prolongable. Then the limitXo, g, g*, V) is a Newtonian space—time if and only
if the curvature operatoRR is prolongable

In conclusion, the limit fibre of a degeneration of Lorentz metrics inherits the structure of a
Newtonian space—time if and only if the relative connection and the curvature operator are
prolongable.
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Let (X, ¢, g) be a degeneration of Lorentz metrics. If the relative connection is pro-
longable we have showed Fheorem 4.8hatg = dr2 mod(e). Now, we shall obtain the
Taylor expansion of up to order 2 ire, when the connection and the curvature operator
are assumed to be prolongable.

Theorem 5.4. Let(X, ¢, g) be a degeneration of Lorentz metrics whose connedfiamd
curvature operatofR are prolongable. Then there exists local coordinates, x1, x2, x3)
such that

g = (1—2ue) dr? — ¢ Z dxi2 mod(sz),
where u is a smooth function on the coordinatesc1, xo, x3).
Proof. Let V(X)) — X be the bundle of normal bases (the fibre of this bundle over a point

x € X isthe six-manifold of all normal basesxgt Let {6y, ..., 03} be the universal normal
basis of one-forms o/V(X). By Proposition 4. andLemma 5.5, we know that

dgp = 0, £2jj = 0mod(e)

(recall that we use Latin indices for 1-3).

Using the second structure equation and the Relative Frob&hemrem 3.2ne checks
immediately that the Pfaff systetw12, w13, w23) is integrable mode).

Moreover, the first Bianchi identity gives

;0N 6g =0mod(e),
i.e., ;0 = o; A Bpmod(e) for some one-forna;. The second Bianchi identity gives
d$2;0 = 0mod(e, w12, w13, W23),

hence d; = 0 mod(s, g, w12, w13, w23). The Relative Poincatéemma A.3 impliesa; =
df; mod(e, 6p, w12, w13, w23) for some functionf;, and then

() $2i0 =df; Afpmod(e, w12, W13, W23).
Now we may prove that the following Pfaff system
P = (w10 — f100, w20 — f200, w30 — fibo, w12, w13, W23)
is integrable mode). From the second structure equation we have
d(wio — fifo) = 2io— »_ wj Awjo— df; AG=0mod(e, P),
J

and by the Relative Frobenid$ieorem 3.2ve conclude thaP is integrable modes).

Therefore, restricting our attention to a suitable subvariet}/eX) of codimension 6
(which corresponds with a section of the bundifeX) — X) we get a (local) normal vector
field basis onX such that

wio = fibo, wjj = 0mod(e)

for certain smooth functiong on X.
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Now, the first structure equation gives us that e 0 mod(¢), hence we may write
locally
0; = dx; mod(e).
On the other hand, we have

doo=—) woi AOi=—¢ Y wio Al =—eY filoAOi=¢Y  fiti ABomod(s?).

Differentiating we obtain 0= dddp = £d(}_ fi6;) A 6omod(e?), hence d3_ f:6;) =
0mod(e, 6p) and then)_ f;6; = df mod(e, 6p) for some smooth functiorf on X. In
conclusion, we have obtained that

doo = e df A 6o mod(&?).
This implies that
d(e™*/ 6p) = 0mod(s?),
SO we may write
e /9y = dr mod(&?)
for certain smooth function, i.e.,
6o = & dr = (1+ &f) dr mod(&?).

Takingu = — f we have:

g = 98 —¢ Z@iz =(1-2ie)di’—¢ deiz mod(s?).

Sinceii = u + ev for some smooth function(z, x1, x2, x3), we finish the proof. O
Remark 5.5. A direct computation shows that the inverseltfeorem 5.4olds.For any
degeneration of the forng = (1 — 2ue”)dr? — & )" dx? mod(e?) the relative connec-
tion V and the curvature operatdR are prolongable Then, byProposition 5.3the limit
(Xo, g, &%, V) is a Newtonian space—time. Moreover, the coordinétes;, xo, x3) are a

Newtonian reference framéégfinition 2.3 on Xg andu is the corresponding potential
function.

As a consequence, it results tteaty Newtonian space—time is locally the limit of some
degeneration of Lorentz metrics

6. Newtonian limit of the Einstein tensor

Inthe relativistic case, the geometric structure of space—time determines the energy-impulse
tensor via the Einstein equation
1 .

T°=_—G
8
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whereG2 is the two-contravariant Einstein tensor. Given a degenergtios, g) of Lorentz

metrics, it is natural to ask when the relative Einstein ter@dis prolongable. We shall

examine this question in this section. First, we shall show th@€ifs prolongable then
72 1 .

= gG\o
defines a matter tensddéfinition 2.5 on the limit fibre Xo.

Let us consider a degeneration of Lorentz mettise, g) whose relative contravariant
Einstein tenso6 is prolongable. Then the Einstein operatbr= C%(G2 ® g) and the co-
variant Einstein tensag? are prolongable. Therefore, the scalar curvatute—traceG),

the Ricci operator Rie= G + (r/2)ld, and the Ricci tensoRy = G, + (r/2)g are also
prolongable.

Proposition 6.1. Let (X, ¢, g) be a degeneration of Lorentz metrics such that the con-
travariant Einstein tenso62 is prolongable. Then we have the following facts in the limit
fibre Xo:

(@) The limit Ricci tensoR; is proportional tog. As in(2.4)we write R, = 4rp - g.

(b) The limit scalar curvature i§ = —8mp.

(c) The limit covariant Einstein tensor §, = 8rp - 3.

(d) If V is prolongable therlivg G2 = 0. (Therefore 72 := (1/87)G? is a matter tensor
on Xo.)

Proof.

() Letus writeg = @ ® @ for some one-fornw on Xyp. Since
(matrix R») = (matrixRic) o (matrixg),

we conclude thaR; is proportional ta» ® @.
(b) Since

(matrixG) = (matrixG?) o (matrixg),

we obtain that rag < kerG, i.e.,G = D ® & for certain vector field> on Xo. Then
r = —tracgG) = —w(D). Moreover,
4rpd @ d=Rp = CLE ®RiC) = CL@® @ ® (D ® @ + 3(7)Id))
=@D)+ 3Mo®d=-3Hd® o,
hencer = —8np.
(€) G2=CiE®G)=CH@®d® D Q@) = d(D)d®d = —7g = 81pg.

(d) Finally, the contracted Bianchi identity @i\G? = 0induces, by continuity, the identity
divg G? = 0 in the limit fibre. O

As a direct consequence Bfopositions 5.3 and 6\e obtain the following.
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Theorem 6.2. Let (X, ¢, g) be a degeneration of Lorentz metrics. Let us assume that the
connectionV, the curvature operatoR and the Einstein tensag? are prolongable. Then

the limit fibre(Xo, g, g*, V, T2) is a Newtonian gravitation

If one drops the assumption on the curvature operator in the above statement then one
obtains the following result (consequencesbpositions 4.10 and 6.1

Theorem 6.2'. Let (X, ¢, g) be a degeneration of Lorentz metrics. Let us assume that the
connectionV and the Einstein tensag? are prolongable. Then the limit fibreXo, g, g*,

Vv, T?) satisfies all the axioms of a Newtonian gravitatiercept for the fifthand its Ricci
tensorR; is proportional tog.

Remark 6.3. Under the hypotheses of the above result, the limit fibre is very near to be a
Newtonian gravitation. In fact, by a result of KunZf Theorem 10the fifth axiom of a
Newtonian space—time may be deduced from the conditRygroportional tog” if it is
assumed that the connecti®his flat at infinity. In conclusion, one obtains the following
result.Let (X, ¢, g) be a degeneration of Lorentz metrics such that the conne&tiand

the Einstein tenso62 are prolongable, andv is “flat at infinity”. Then the limit fibre

(Xo, &, 8%, V, T?) is a Newtonian gravitation

Now we shall characterize the prolongability of the Einstein te&dn terms of the Taylor
expansion of in . We begin with the following.

Lemma 6.4. Let(X, ¢, g) be a degeneration of Lorentz metrics and{l@, ..., 63} be a
normal basis of relativd-forms. The Einstein tens@¥? is prolongable if and only if the
following conditions hold

212 A 03 — 213 A 02 + 223 A 61 = 0mod(e),
20i A 0; — 20j A 6; + 2 A by = 0mod(e?)

foranyl<i < j <3.

Proof. The computationis simplified using a certainimportant fédimtroduced by Cartan
[3]. Let us consider the identity operator Idl'(X/I) — T(X/I) as a relative one-form
valued in the module of relative vector fields, and the curvature opeRatas a relative
two-form valued in the module of sections ﬂfZT(X/I). Then IdA R is a three-form
valued in AT (X/I). Applying the Hodge’s star we finally obtain a relative three-form
valued in the module of relative vector fields

e = (dAR)*.
This form and the relative Einstein tensor are mutually determined by the formula
O = Clwy ® G?),

wherewy = 3209 A 61 A 02 A B3 is the relative volume form. The above formula implies
thatG? is prolongable if and only if ~%/2@ is prolongable.
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Now we examine the prolongability ef 326 . We have

R=— & '2p® Dy A Dg.
a<f

*(D1 A D2 A D3) = —83/2D0, *(Dg A Do A D3) = —81/2D1,
%(Dg A D1 A D3) = +¢Y2Dy, *(Do A D1 A Dp) = —&Y/?D3.
Therefore,
e7¥20=72(d AR = =) Y 26, A Q2up) ® x(Dy A Dy A D)
Y a<p
=& 101 A 223 — 02 A 213+ 603 A 212) ® Do
+ 67260 A 223 — 62 A 203+ 63 A 202) @ D1
— 7200 A 213 — 01 A 203+ 03 A 201) ® Do
+672(0p A 212 — 61 A 202+ 02 A 201) ® D3,
and the result follows. O
Theorem 6.5. Let (X, ¢, g) be a degeneration of Lorentz metrics such that the relative

connectionV, the curvature operatoR and the Einstein tensag? are prolongable. Then
there exists local coordinates, 7, x1, x2, x3) on X such that the components of g are

gt=1—-2uemod(e?),  gi=0mod(?),  gj=—(c+ 2ue?)sjmod(ed),
where u is a smooth function on the coordinatesc1, x», x3).
Proof. As in the proof ofTheorem 5.4ve consider the bundle of normal bagésX) — X

and the universal normal bag#, . . ., 83} of one-forms onV(X). In the proof ofTheorem
5.4we have showed the following facts:

(8) The Pfaff systenfwi2, w13, wp3) is integrable mods).
(b) 2i0=df; AOgmod(e, w12, w13, W23).
(c) The Pfaff systentwio— f160, w20 — f260, w30 — f36o) IS integrable mode, w12, w13,
23).
Moreover, the prolongability of the Einstein tensf implies byLemma 6.4that

25 NOo=20; NO; — Q0 NOj =e(2jo N0 — 20 A 0j)
Zedf; A0 —dfj AB) A B
mod (2, ew1o, w13, ewp3) forany 1< i < j < 3. Therefore,
Qj=edfing; —df; AO)

mod (&2, sw1o, cw13, cwo3, Og). Sinceg2j; = 0mod(e) (by Lemma 5.b) we conclude
that
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(d) 25 = edf; A 0; — dfj A 6;) mOd(82, gw12, EW13, EW23, £00).
From (c), restricting our attention to a suitable subvariety/6X ) (of codimension 3),

we may assume that
(e) wio = fifomod(e, w12, W13, W23).
Now we may prove that the following Pfaff system of rank 3
1<i<j<3

P = (wij —e(fi0j — [fi6)),
is integrable mods?, £6p). In fact, modulo(s?, 6, P) we have
= 2 —wio NEwjo — Za)ik A |
k

da)ij = Qjj — wio AN woj — Z Wik A Wkj
k

= Qi — fifo Aefibo— Y e(fibk — fi0) Ae(fib) — £i6k)
k

= 25 Ze(df; A 0; —df; A6,

a)jo/\90+2wjk/\9k
k

=edfi NOj—¢f; (wjo/\eo—l—zs(fj@k — Jibj) A Ok

k
hence dwjj — e(fi0; — f;6:)) =0 mod(e2, e6p, P). By Proposition A.4ve conclude
that P is integrable mods?, £6p). Therefore, restricting our attention to a suitable

)Esdfi /\Qj,

and
d(efi6;) =edfi nO; — ef; (

section ofAV(X) — X, we may obtain a normal basis satisfying
wij = e(fi0; — f16;) mod(&?, ebp)

for anyi, j > O.

wio = fibo,
Now, the argument given in the last part of the prooTbEorem 5.4hows that
> fibi = df mod(e. 6p), 6o = €7 dr mod(e?)
k
—f, itresults

for certain functionsf, ¢. Takingu
(*) 6= (1 — i) dr mod(&?).

Moreover,

k

o =—wio Ao — Y ik Ak =—FiboAbo— Y e(fibk — fibh) A Ok
k
=—) efithk A0 = —edf A6 = edi A6 mod(e?, 26p),

k
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hence de ¢%6;) = 0mod(e2, £6p). By Proposition A.6we have e9; = dx; mod
(€2, e6p) for certain functions;, and then

(%) 6 =€ dx; = (1 + iie) dx; mod(e2, e6p) = (62, e dr).

The proof concludes substituting)@nd ) in the equalityg = 62 — ¢ 3", 62. O

Remark 6.6. A similar result toTheorem 6.5s obtained by RendaJlL6]. He assumes a
global condition (flatness at infinity) instead of our local condition on the prolongability of
the curvature operator.

Remark 6.7. A direct computation shows that the inverseTdfeorem 6.5holds.Let us
consider a degeneratiogn = gy dr2 + > gti(drdx; +dx; dr) + Zij gij dx; dx, where

gt = 1 — 2us mod(&?), gi = 0mod(s?), gij = — (& + 2ue?)8; mod(e3),

andu is a smooth function on the coordinaiesxy, x2, x3). Then the relative connection,
the curvature operatoR and the Einstein tensag? are prolongable. Byrheorem 6.2the
limit (Xo, g, g*, T?) is a Newtonian gravitation. Moreover, the coordinatesx1, x2, x3)
are a Newtonian reference framig€finition 2.3 on X andu is the corresponding potential
function

Let us sketch the computation. From the hypothesig,0one obtains a normal basis
{60, 61, 62, O3} such that

0o = €/ dr mod(e?), 6; = &7 dx; mod(£?, e dt),

where f = —u. By Proposition 4.%ve know that the relative connection is prolongable.
Letdf = >, fit mod(fp). Computing the connection one-forms and the curvature
two-forms, one obtains

wio = filomod(e),  wij = &(fi6; — f;6;) mod(&?, £6o),
Qi0 = dfi Afymod(e), Qij = e(df; A0; —df; A6;) mod(e?, ebp).

Using Proposition 5.2b andemma 6.4we conclude that the curvature operafand the
Einstein tenso2 are prolongable.

Remark 6.8. The expression of given inTheorem 6.3s equivalent to the following pair
of equations:

g=1—2ue)dr@dr —e Z dx; ® dx; mod(s?),
— 8" = —£0, ® 0 + (1 — 2ue) Y _ 0y, ® dy, mod(e?).
Remark 6.9. By means of a suitable change of coordinates, we may assume that the

coordinateq(r, x1, x2, x3) of Theorem 6.5coincide onXg with an arbitrary Newtonian
reference frame. In other words, under the hypothesiShaforem 6.5any Newtonian
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reference framét, x1, x2, x3) at a pointxg € Xg may be locally extended so as obtain a
local coordinate systers, 7, x1, x2, x3) on X such that the components of g are

gt=1—-2uemod(e?),  gi=0mod(?),  gj=—(c+ 2ue?)sjmod(ed),
whereu(z, x1, x2, x3) is the potential function of the given Newtonian reference frame.

SeeAppendix Bfor a global version oRemark 6.9

7. Examples
7.1. Degeneration of Schwarzschild metrics

Let us consider the Lorentz metric corresponding to an isolatedsmasstandard units:
1 —-2r"tmc?)di? — 21— 2rImc?) L dr? — % 2(da? + (sirf ) dB?),

wherec is the speed of light and must be understood as the “distance” to such mass.
Takinge = ¢~2 we obtain the following degeneration of Lorentz metrics:

g=(1- 2r tme)dt® — e(1 — 2r "tme) "L dr? — er?(do? + (sirf a) d,BZ).
Takingu = m/r we have
g=(1-2us) dt? — e(dr? + r2do? + r3(sirf a) d,32)
= (1— 2us¢) dr? — ¢ Z d)cl-2 mod(ez).

By Remark 5.5the connection and the curvature operator are prolongable and the limit
fibre is a Newtonian space—time. Moreoveyx1, x2, x3) is a Newtonian reference frame on
this Newtonian space—time,= m/r being the corresponding potential (it is the Newtonian
gravitation corresponding to a punctual mass). Note that the Einstein tensor is obviously
prolongable since it is null.

7.2. Degeneration of Friedmann—Robertson—-Walker metrics

Let us consider the Robertson—Walker metric
de? — r(t)2 do?,
where &2 is the three-dimensional Riemannian metric of constant curvaie.,
2 > d”,‘z
A+ KB Y ud?

Replacing by r/c andK by K /c2, we obtain the following degeneration of Robertson—
Walker metrics:

> di?

-d 2 2 :
8= O KA YD

whereg = ¢~2.
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Since we haves = dr2mod(e), the relative linear connectiol associated tg is
prolongable (byrheorem 4.8 Computing the limit connectioRW we obtain

/

_ _ r _
Vodi =0, Vb =—du.  Va,du; =0.

Moreover, a direct computation gives us the following matrix for the relative curvature
operator in the basi; A 9y, 9 A 0uy, 0 A Ougs uy A dugs Qugs Aduys duy A Oy )
"
I 0
" 2
K ! ’
_%r)[

R =

r

where [ is the 3x 3 identity matrix. ThereforeR is prolongable and we conclude by
Proposition 5.3hat the limit fibre(Xo, g, g*, V) is a Newtonian space—time.

The Ricci tensor oV is Ry = —3(+"/r) dr2. It follows that, in the limit Newtonian
space—-time, the mass density is

3r”
4y’

Remark that in this Newtonian space—time the coordin@tes, u», u3) arenota New-
tonian reference frame, becagge= (1/r2) > 84, ®3y, . To get coordinates in a Newtonian
reference frame itis enough to pit= ru;. In this Newtonian reference franie x1, x2, x3)
the intensity force is

o ==

_ r//
F=-=Vyo = <7> (x10x) + x20x, + X30x3).

As it is well-known, a Robertson—Walker metric describes an isotropic cosmology. Its
energy-impulse tensdi’2 (p+ p) D ® D —pg* corresponds to a relativistic perfect fluid,
where the flow vector field i® = 9, (written in the coordinateg, u1, u2, u3)), the energy
density isp = 3((r')2 + K)/87r? and the pressure is = —(2r"r + (r')2 + K)/87r?
(see[15, 12.11). It is immediate to check that the relative energy-impulse tefgoof
the degeneration is prolongable if and onlyit= 0 (i.e., the fluid is aus). In this case,
the Newtonian limit(Xo, g, g*, V, T?) is a Newtonian perfect fluid with flow vector field
D = 9,;+(r'/r) Y x;dy;,, mass density = —3r”/4nr and pressurp = 0. This Newtonian
gravitation is the isotropic cosmology studied by Heckmann and Schufkjg

7.3. Any Newtonian gravitation is the limit of a degeneration

A natural question is whether any Newtonian gravitation is the limit fibre of some suitable
degeneration of Lorentz metrics, in such way that the Newtonian matter téRserthe
limit of the relativistic energy-impulse tensors. The answer is affirmative under certain
conditions. Let us show, without proofs, the degeneration.

Let us consider a Newtonian gravitationefy where the Cartesian coordinatesr1, x»,
x3) are a Newtonian reference franiegffinition 2.3. Letu be the corresponding potential
function. We shall assume that the matter teri&bhas compact support at each instant t
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and that u is the Newtonian potential corresponding to the mass densigf us write
T? = pdy @ & + ) wi(3 ® by, + 0y, @ 8) + ) hijdy, ® ;.

Then the desired degeneration is

g=gudr @dr+ Y gi(dt ®dx; +dy; ®dr) + Y gj dx; @ dlx;,
gn=1-2ue +ae? + 0%,  gi=Wie? + O,
gij = —(e + 2ue?)8j — Hjje3 + O(e™),
whereW; is the Newtonian potential corresponding to;4 Hjj the Newtonian potential

corresponding to # — (1/47)(2(3" u?)8j + 4uuj) anda = 6u? — " Hy. (Notations:
up = ou/oxy, uj = 82u/3xi8xj.)

7.4. Newtonian gravitation defined by punctual masses

Let us considen curves
oi iR >R oi(t) = (1. x5(0), xh(t), x5(1)), 1<i<n.

Let us consider a Newtonian gravitation defined on the complement af tveves in
R*. We assume that the Cartesian coordinates, x», x3 are a Newtonian reference frame
(2.3) with the following potential function:

u(t, x1,x2,%3) = <nri) o= [ O = xp0)2,
i=1 ! k

where the terms:; only depend on, andr; is the “spatial distance” te; (). We also
assume that the matter tensbt vanishes. This Newtonian gravitation will be said to be
defined byn punctual masses (following the trajectoriggs) and with variable masses
m;(t)).

Note that the axioms of a Newtonian gravitation do not impose any condition to the
trajectorieso; () neither to the masses; (). Although we prove if13], using a global
version of Theorem 6.5stated inAppendix B), the following theorem which is closely
related to the classical EIH resu[i&8].

Theorem 7.1. If a Newtonian gravitation defined by n punctual masses is the limit fibre of
a degeneration of Lorentz metrics then the massgs) are constants and the trajectories
o; (1) obey the Newtonian law of motion

See Ehler$6] for more examples of Newtonian limits. The best result on the existence of
Newtonian limits is contained in Rend§ll7].
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Appendix A. Relative differential forms

In this appendix we prove the relative versions of the Poincaré lemma and the Frobenius
theorem used in this paper. The theory of differentiable spacepl@&gprovides the natural
context for this kind of results.

LemmaA.l. LetL be afree module of finite rank over a local ri@land let B P’ be free
submodules of lboth direct summands of rank . f" P = A" P/, thenP = P’.

Proof. SinceQ is a local ring, any direct summand 6fis a free module. Therefore, we
may choose a basigy, ..., e,} of L such thafe, ..., ¢} is a basis ofP.
For anye’ € P’ we may writee’ = aje1 + - - - + aye, and

e1N---Ae,Ne =arp1e1 A Ae ANepp1 - ager Ao Aep Aey,.

Sincee1 A ---Ae, Ae € ATP AP = A"tLP’ = 0 we conclude that, 41 = -+ =
a, =0, hence?’ € P. O

With the notations of the lemma, Iétbe an ideal of0. ThenP/IP and P’/IP’ are free
O/I-modules and direct summanddofiL. We writeP = P’ modI whenP/IP = P’/IP’.
SinceAb/I(P/lP) = (A, P)/1 A}, P the above lemma implies the following.

Corollary A.2. Withthe notations ofthe lemniat| be anideal 0®.If A” P = A" P’ mod/
thenP = P’ mod].

Let us recall the notations @&ection 3Lety : X — Y be a submersion. Given points
x € X andy = ¢(x) € Y, let us consider the differential exterior algebra of the relative
forms (germs at)

w=Colen’e. ...
Relative Frobenius Theorem A.3. Let P € 21 be a relative Pfaff system atand let

J C C;o be anideal. IdP = 0mod(J, P),i.e,dP = Qinthe quotientalgebra2?/(J, P),
then P is integrable modul@J),

P = (dzy, ..., dz,) mod(J).

Moreovet if P is also integrable modulo an idedl’ € J, then there exist germg =
z; mod(J) such that

P = (dz}, ..., dz,) mod(J').

Proof. Letusconsiderlocalcoordinates, ..., x,, y1,...)suchthap(xy, ..., y1,...) =
1, ...). ThenQ} = (dx1,...,dx,). Let us writeP = (w1, ..., w,), wherer is the rank
of P. We prove the integrability o mod(J) by induction on the relative dimension
The initial case: = 1 is obvious.
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For the general case we may assumerthat: since the case= nis obvious. Thenthere
exists a relative vector fiel® such thatD, # 0 andw1(D) = - - - = o, (D) = 0. Taking
suitable coordinates we may assume fhat 9/9dx,. For clarity let us write¢ = x,,, so that
D =9/0t and.Q}} = (dxq, ..., dx,—1,dt). LetA = ¢ (x). Let us consider the hypersurface
X’ of X defined by the equatian= A. Theng : X — Y is the composition of the following
maps:

X > X, m(xg, .oty ) =G0 A 1,0, @ X > Y, 9 =gx

Note that(x1, ..., x,_1, y1, . .. ) are local coordinates ax’ andthatfz}(,’x = (dxq, ...,
dx,_1), where.{z}f,’x denotes the module of relative one-forms with respect to the map
¢ i X' — Y.Leti : X’ — X be the natural inclusion. By the induction hypothesis the
Pfaff systemi* P on X’ is integrable modJ). Now we prove that? = 7*i* P mod(J)
and the integrability o> mod(J) follows.

By hypothesis we have

doj =n1j Awi+ -+ nj Ao mod(J)

for somer;j € 221. Therefore,

LDa)j =ip da)j = Zr)ij (D)w; mod(J),

hence
Lp(i A Awpy) =uwi A--- Aw mod(J)

for certain smooth function. Replacings1 by e~/ “% w1 we may assume that
Lp(wi A--- A wy) =0mod(J).

Sincew;(3/9t) = 0 we have

WA AWy = Z 8o Oxiy Ao Adx;,

a=(i1<-<iy)

for certain smooth functions,. Then

a
O=Lplwi A ANwy) = Z %dxil/\uwdxir mod(/J),

a=(ig<--<iy)

hencedg, /9t = 0mod(J), i.e.,dg,/dt = >_ fih; for certaink; € J. Then

8o = 8a(X1, .- ) Xn—1, V1, - ..)+Zh,~/f,- dr = gu(x1, -+, Xp—1, ¥1, - .. ) MOd(J),

whereg, does not depend an As a consequence it results thelti*(g,) = 7*i*(gy) =
8« = 8o mod(J) and therefore

T (@I A Awp) = 01 A Ao mod(J).

FromCorollary A.2we conclude that*i* P = P mod(J).
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Now we prove the second part of the statement by induction on the relative dimension
n. Itis assumed thaP is integrable modJ), i.e., P = (dz3, ..., dz,) mod(J) and thatP
also is integrable modulo an ide#l C J.

With the previous notations we have that=0 dz; (D) = dz;/dt mod(J). The same
argument used fof, proves thatr*i*(z;) = z; mod(J).

Restricting to the hypersurfac€ we havei* P = (dzy, ..., dz,) mod(J), wherez; :=
i*zj. By induction hypothesis there exist smooth functi@f/)sE z;mod(J) such that
i*P = (dz;, ..., dz.) mod(J). Therefore, ‘

P=x**P=(dZ,...,dz.) mod(J),
Wherez’j = ”*(Z.//) = n*(Z;) = n*i*z; = z; mod(J). O

In this paper, we have used the Frobenius theorem in the following slightly more general
version.

Relative Frobenius Theorem A.3'. LetJ € C7° be anidealandleP = M © N < !
be a relative Pfaff system at x such that N is integrable modujolf dM = 0 mod(J, P)
then M is integrablemod(J, N), i.e,,

M = (dz1,....dz,) in 22/(J,N).

Proof. By Relative Frobeniugheorem A.3the hypotheses imply tha® is integrable
mod(J), i.e.,

P/IP=(dz1,...,dz0) € 217721

We conclude the proof taking quotient with respecMo

M/IM = (dzg, ..., dz,) € 27002+ N). O
Proposition A.4. Lete : X — R be a submersion and 1€8, w1, ..., wx) be a relative
Pfaff systenfat a pointx € X with e(x) = 0) of rankk + 1. If 6 is exactmod(¢”) and

dw; = 0mod(e?, "0, w1, ..., wx), 1<i<k
then(ws, ..., wy) is integrablemod(¢%, £79).

Proof. Sinced is exact mods") we may put

0 =dr+¢"6.
By the Frobenius theorefiws, ..., wy) is integrable mods")
(w1, ..., ) = (dx1, ..., dxg) mod(s").

Replacing the generatoss if necessary, we may assume that

(x) w=dx;+¢& o).
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Sinces”0 = ¢ dr mod(e2), the conditions &; = 0mod(¢%, ¢"6, w1, . .., wi) imply that
the Pfaff systerds, w1, . .., wy) also is integrable mo@?), i.e.,
(dt, w1, ..., o) = (dr’,dxy, ..., dx;) mod(e?).

Using the second part of Relative Frobenitleeorem A.3we may putr’ = ¢ + ¢"v and
x! = x; + ¢ u;. Hence, d] = dx; + ¢" du;, and usingx) it follows easily that

("dt, w1, ..., ) = (¢"dt, dx], ..., dx;) mod(e?),
and therefore
(@1, ..., ) = (dx], ..., dx;) mod(s?, &" dr) = (¢%, £76). O

Let us again consider a submersipn X — Y and respective points € X andy =
¢(x) € Y. LetJ be an ideal of;’g’,o.

Relative Poincaré Lemma A.5. A relative p-formw € 27 is closed moduldJ) if and
only if it is exact moduld@J).

Proof. Of course any exact mad) p-form is closed modJ). For the inverse let us
consider local coordinategs, ..., x,, y1,...) such thatp(x1, ..., y1,...) = (y1,...).
Let us also consider the relative vector fiddd:= x1(d/9x1) + - - - + x,,(8/9x,,) and the
operatorH : 23 — £2? defined by the equalities

w= Z S jp (X1, ey Xpy Y1, ...) Oxgy /\-~-/\dxjp,

Ji<<Jp

1
Ho= Z (/(; tp_lfjl...jp(txl,...,tXn,yl,...)dt>iD(dxj'l/\~-~/\dx]'p).

Ji<<Jp

The standard proof of the absolute Poincaré lemma shows that Flod + do H. To

conclude it is enough to remark thetw e J 27! wheneverw € JQF.If f € (J) =
JCF, ie.,

f(‘xlf"'?‘xilfyl?"‘) :Zhi(y].?"')gi(‘xl!"'?‘xilfyl?"')
i
for certainh; € J, then
1
/tf’_lf(txl,...,txn,yl,...)dt
0

1
= Zh,-(yl,...)/o tf"lg,-(txl, e Xy, y1,..)dE € (J). O
i

Let us consider a more general version of the Poincaré lemma.



620 J.A. Navarro Gonzalez, J.B. Sancho de Salas/Journal of Geometry and Physics 44 (2003) 595-622

Relative Poincaré LemmaA.5'. Let N be an integrablémodJ) Pfaff system at x and let
w € 2F be arelative p-form. Il = 0 mod(J, N) thenw = dw’ mod(J, N) for some
relative (p — 1)-forma’ € ot

Proof. SinceN is integrable modJ/) we may writeN = (dt4, ..., d,) mod(J), wherer
is the rank ofN. Then(J, N) = (J, dr, ..., dr,) (ideals ofs2?). This implies that

28/, N) = 23/(),

where(}; is the algebra of relative forms with respect to the submergiom, ..., 7)) :
X —>Y xR y
Now the result follows from Relative Poincatémma A.5applied tos2? /(J). |

Proposition A.6. Lete : X — R be a submersion and |6t w be relativel-forms(germs
at a pointx € X with e(x) = 0). Let us assume tha&t, # 0, i.e, (0) is a Pfaff system. #
is exact modulds”) and

dw = 0mod(?, £"6)

thenw is exactmod(s?, ¢”9).

Proof. Note that @ = 0mod(s"). By the Poincaré lemma we may write
w=dx + "o

for some relative one-form’. By hypothesis, 0= dw = ¢ dw’ mod(¢?, £"6). Hence,
do’ = 0mod(e”, ). By the Relative Poincatéeemma A .5, itresultsiny’ = d f mod(s", 0)
for certain functionf. Therefore,

w=dx+&o =dv+¢ df =dx + ¢ f)mod(?, & 6). O

Appendix B. A global result

In this appendix, we shall obtain a global versioTokorem 6.5Let us begin with some
observations on Newtonian reference franigsfinition 2.3:

(&) The Newtonian potential corresponding to a Newtonian reference frame x2, x3)
is uniquely determined except by a summarid.
(b) Two Newtonian reference frames are related by a transformation of the type
a+t, &= fi)+) ajx),
J

r

whereaq is a constant ang;j) is an orthogonal matrix of constant coefficients.

Let (X, ¢, g) be a degeneration of Lorentz metrics such that the relative connégtion
the curvature operatd® and the Einstein tensa@? are prolongable. Bfheorem 6.2the
limit fibre Xg inherits the structure of a Newtonian gravitation.
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LemmaB.1. Let(z, k1, i2, X3) be alocal Newtonian reference frame Bg and leti be the
corresponding potential function. These functions may be extended locally so as to obtain a
local coordinate syster, ¢, x1, X2, x3) on X such that the coefficients of g in that system
are

gt =1—2iemod(¢?),  gi = 0mod(s?), gij = —(& + 2iie®)8; mod(e3).

Proof. By Theorem 6.3here exists a local coordinate systéms, x1, x2, x3) on X such
that the corresponding coefficientsghre

gt = 1 — 2us mod(&?), gi = 0mod(s?), gij = — (& + 2ue®)8; mod(e3).

Moreover, the restriction aoft, x1, x2, x3) on Xg is a Newtonian reference frame being

the corresponding potential function (SRemark 6.J. Recalling the above observations

(a) and (b), it is easy to check that the desired coordinate system is obtained by means of a
suitable transformation

f=a+t+eh@), xi=f+) ajx;. 0
j

Theorem B.2. Let (¢, x1, x2, x3) be a global Newtonian reference frame &g such that
the slices = const are simply connected his reference may be extended so as to obtain
a coordinate systerts, 7, x1, x2, x3) on a neighborhood aXg, such that the corresponding
coefficients of g are

gt =1—2uemod(¢?),  gi = 0mod(s?), gij = —(& + 2ue®)8; mod(e3).

Proof. The previous lemma says that the desired extension locally exists. This local exten-
sion is not unique. It is easy to check that two extensions are related by a transformation of
the type

i=t4+eamod(c®), K =xi+e|hi()+ )Y hjt)x; | mod(e?),
j

wherea is locally constanth; (1) are locally smooth functions an andhjj () are locally
smooth functions onsuch thatjj (r) = —h;i (¢). Therefore, the obstruction to the existence
of a global extension yields in the cohomology gratip(Xo, R & 0% = H1(Xo, R) &
H(Xo, 0)%, whereR is the sheaf of locally constant functions afids the sheaf of smooth
functions orr (locally). Since the slices= const are simply connected, we have th&g
is also simply connected and thér (Xo, R) = 0.

Finally we have to show thatf1(X, ©) = 0. Let.Q}’;o/R be the sheaf oX¢ of relative
p-forms with respect to the submersion Xg — R. Let us consider the relative De Rham
complex of sheaves

00— 550k 0525 p 23 » — 0.
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This sequence is exact by the Relative Poindaggnma A.5 The sheaveszgo/R are

C?g-modules hence they are soft (§&&]) and the above sequence is an acyclic resolution
of O. Therefore,

HY(Xo, O) = { relative closed 1-forms oKg }

relative exact 1-forms oK

and we have to prove that any relative closed one-feris exact. Letr : R — Xp be a
smooth section of : Xg — R. For any pointz, x) € Xo we define

F(t,x):fa),
12

wherey is an arc joiningo (¢) and (¢, x) contained in a slice = const. Since the slice
is simply connected, the above integral does not depend on the chosen arc and we have
w = dF. O
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